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EXAMPLE 17.11
Illustration of the
Almon Distributed-
Lag Model

To illustrate the Almon technique, Table 17.8 gives data on inventories Y and sales X for
the United States for the period 1954–1999.

For illustrative purposes, assume that inventories depend on sales in the current year
and in the preceding 3 years as follows:

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + β3 Xt−3 + ut (17.13.11)

Furthermore, assume that βi can be approximated by a second-degree polynomial as
shown in Eq. (17.13.2). Then, following Eq. (17.13.7), we may write

Yt = α + a0 Z0t + a1 Z1t + a2 Z2t + ut (17.13.12)

where

Z0t =
3∑

i=0

Xt−i = (Xt + Xt−1 + Xt−2 + Xt−3)

Z1t =
3∑

i=0

i Xt−i = (Xt−1 + 2Xt−2 + 3Xt−3) (17.13.13)

Z2t =
3∑

i=0

i 2 Xt−i = (Xt−1 + 4Xt−2 + 9Xt−3)

The Z variables thus constructed are shown in Table 17.8. Using the data on Y and the Z ’s,
we obtain the following regression:

Ŷ t = 25,845.06 + 1.1149Z0t − 0.3713Z1t − 0.0600Z2t

se = (6596.998) (0.5381) (1.3743) (0.4549)

t = (3.9177) (2.0718) (−0.2702) (−0.1319)
(17.13.14)

R2 = 0.9755 d = 0.1643 F = 517.7656

Note: Since we are using a 3-year lag, the total number of observations has been reduced
from 46 to 43.

(Continued )

Before proceeding to a numerical example, note the advantages of the Almon method.
First, it provides a flexible method of incorporating a variety of lag structures (see Exer-
cise 17.17). The Koyck technique, on the other hand, is quite rigid in that it assumes that
the β’s decline geometrically. Second, unlike the Koyck technique, in the Almon method
we do not have to worry about the presence of the lagged dependent variable as an ex-
planatory variable in the model and the problems it creates for estimation. Finally, if a
sufficiently low-degree polynomial can be fitted, the number of coefficients to be esti-
mated (the a’s) is considerably smaller than the original number of coefficients (the β’s).

But let us re-emphasize the problems with the Almon technique. First, the degree of the
polynomial as well as the maximum value of the lag is largely a subjective decision. Second,
for reasons noted previously, the Z variables are likely to exhibit multicollinearity. Therefore,
in models like Eq. (17.13.9) the estimated a’s are likely to show large standard errors (relative
to the values of these coefficients), thereby rendering one or more such coefficients statisti-
cally insignificant on the basis of the conventional t test. But this does not necessarily mean
that one or more of the original β̂ coefficients will also be statistically insignificant. (The proof
of this statement is slightly involved but is suggested in Exercise 17.18.) As a result, the mul-
ticollinearity problem may not be as serious as one might think. Besides, as we know, in cases
of multicollinearity even if we cannot estimate an individual coefficient precisely, a linear
combination of such coefficients (the estimable function) can be estimated more precisely.
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TABLE 17.8 Inventories Y and Sales X, U.S. Manufacturing, and Constructed Z’s

Observation Inventory Sales Z0 Z1 Z2

1954 41,612 23,355 NA NA NA
1955 45,069 26,480 NA NA NA
1956 50,642 27,740 NA NA NA
1957 51,871 28,736 106,311 150,765 343,855
1958 50,203 27,248 110,204 163,656 378,016
1959 52,913 30,286 114,010 167,940 391,852
1960 53,786 30,878 117,148 170,990 397,902
1961 54,871 30,922 119,334 173,194 397,254
1962 58,172 33,358 125,444 183,536 427,008
1963 60,029 35,058 130,216 187,836 434,948
1964 63,410 37,331 136,669 194,540 446,788
1965 68,207 40,995 146,742 207,521 477,785
1966 77,986 44,870 158,254 220,831 505,841
1967 84,646 46,486 169,682 238,853 544,829
1968 90,560 50,229 182,580 259,211 594,921
1969 98,145 53,501 195,086 277,811 640,003
1970 101,599 52,805 203,021 293,417 672,791
1971 102,567 55,906 212,441 310,494 718,870
1972 108,121 63,027 225,239 322,019 748,635
1973 124,499 72,931 244,669 333,254 761,896
1974 157,625 84,790 276,654 366,703 828,193
1975 159,708 86,589 307,337 419,733 943,757
1976 174,636 98,797 343,107 474,962 1,082,128
1977 188,378 113,201 383,377 526,345 1,208,263
1978 211,691 126,905 425,492 570,562 1,287,690
1979 242,157 143,936 482,839 649,698 1,468,882
1980 265,215 154,391 538,433 737,349 1,670,365
1981 283,413 168,129 593,361 822,978 1,872,280
1982 311,852 163,351 629,807 908,719 2,081,117
1983 312,379 172,547 658,418 962,782 2,225,386
1984 339,516 190,682 694,709 1,003,636 2,339,112
1985 334,749 194,538 721,118 1,025,829 2,351,029
1986 322,654 194,657 752,424 1,093,543 2,510,189
1987 338,109 206,326 786,203 1,155,779 2,688,947
1988 369,374 224,619 820,140 1,179,254 2,735,796
1989 391,212 236,698 862,300 1,221,242 2,801,836
1990 405,073 242,686 910,329 1,304,914 2,992,108
1991 390,905 239,847 943,850 1,389,939 3,211,049
1992 382,510 250,394 969,625 1,435,313 3,340,873
1993 384,039 260,635 993,562 1,458,146 3,393,956
1994 404,877 279,002 1,029,878 1,480,964 3,420,834
1995 430,985 299,555 1,089,586 1,551,454 3,575,088
1996 436,729 309,622 1,148,814 1,639,464 3,761,278
1997 456,133 327,452 1,215,631 1,745,738 4,018,860
1998 466,798 337,687 1,274,316 1,845,361 4,261,935
1999 470,377 354,961 1,329,722 1,921,457 4,434,093

Note: Y and X are in millions of dollars, seasonally adjusted.

Source: Economic Report of the President, 2001, Table B-57, p. 340. The Z ’s are as shown in Eq. (17.13.13).

EXAMPLE 17.11
(Continued)
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Our illustrative example may be used to point out a few additional features of the Almon
lag procedure:

1. The standard errors of the a coefficients are directly obtainable from the OLS regression
(17.13.14), but the standard errors of some of the β̂ coefficients, the objective of primary
interest, cannot be so obtained. But they can be obtained from the standard errors of the
estimated a coefficients by using a well-known formula from statistics, which is given in
Exercise 17.18. Of course, there is no need to do this manually, for most statistical pack-
ages can do this routinely. The standard errors given in Eq. (17.13.15) were obtained
from EViews 6.

A brief comment on the preceding results is in order. Of the three Z variables, only Z0

is individually statistically significant at the 5 percent level, but the others are not, yet the
F value is so high that we can reject the null hypothesis that collectively the Z ’s have no
effect on Y. As you may suspect, this might very well be due to multicollinearity. Also, note
that the computed d value is very low. This does not necessarily mean that the residuals
suffer from autocorrelation. More likely, the low d value suggests that the model we have
used is probably mis-specified. We will comment on this shortly.

From the estimated a’s given in Eq. (17.13.3), we can easily estimate the original β’s
easily, as shown in Eq. (17.13.8). In the present example, the results are as follows:

β̂0 = â 0 = 1.1149

β̂1 = (â 0 + â1 + â 2) = 0.6836

β̂2 = (â 0 + 2â1 + 4â 2) = 0.1321
(17.13.15)

β̂3 = (â 0 + 3â1 + 9â 2) = −0.5394

Thus, the estimated distributed-lag model corresponding to Eq. (17.13.11) is:

Ŷt = 25,845.0 + 1.1150X0 + 0.6836Xt−1 + 0.1321Xt−2 − 0.5394Xt−3

se = (6596.99) (0.5381) (0.4672) (0.4656) (0.5656) (17.13.16)

t = (3.9177) (2.0718) (1.4630) (0.2837) (−0.9537)

Geometrically, the estimated βi is as shown in Figure 17.8.

EXAMPLE 17.11
(Continued)

FIGURE 17.8
Lag structure of the
illustrative example.
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2. The β̂’s obtained in Eq. (17.13.16) are called unrestricted estimates in the sense that no
a priori restrictions are placed on them. In some situations, however, one may want to
impose the so-called endpoint restrictions on the β’s by assuming that β0 and βk (the
current and kth lagged coefficient) are zero. Because of psychological, institutional, or
technical reasons, the value of the explanatory variable in the current period may not
have any impact on the current value of the regressand, thereby justifying the zero value
for β0. By the same token, beyond a certain time the kth lagged coefficient may not have
any impact on the regressand, thus supporting the assumption that βk is zero. In our
inventory example (Example 17.11), the coefficient of Xt−3 had a negative sign, which
may not make economic sense. Hence, one may want to constrain that coefficient to
zero.53 Of course, you do not have to constrain both ends; you could put restriction only
on the first coefficient, called near-end restriction, or on the last coefficient, called
far-end restriction. For our inventory example, this is illustrated in Exercise 17.28.
Sometimes the β’s are estimated with the restriction that their sum is 1. But one should
not put such restrictions mindlessly because such restrictions also affect the values of
the other (unconstrained) lagged coefficients.

3. Since the choice of the number of lagged coefficients as well as the degree of the poly-
nomial is at the discretion of the modeler, some trial and error is inevitable, the charge
of data mining notwithstanding. Here is where the Akaike and Schwarz information
criteria discussed in Chapter 13 may come in handy.

4. Since we estimated Eq. (17.13.16) using three lags and the second-degree polynomial,
it is a restricted least-squares model. Suppose we decide to use three lags but do not use
the Almon polynomial approach. That is, we estimate Eq. (17.13.11) by OLS. What
then? Let us first see the results:

Ŷt = 26,008.60 + 0.9771Xt + 1.0139X t−1 − 0.2022 Xt−2 − 0.3935Xt−3

se = (6691.12) (0.6820) (1.0920) (1.1021) (0.7186)

t = (3.8870) (1.4327) (0.9284) (−0.1835) (−0.5476)

R2 = 0.9755 d = 0.1571 F = 379.51 (17.13.17)

If you compare these results with those given in Eq. (17.13.16), you will see that the over-
all R2 is practically the same, although the lagged pattern in (17.13.17) shows more of a
humped shape than that exhibited by Eq. (17.13.16). It is left to the reader to verify the R2

value from (17.13.16).
As this example illustrates, one has to be careful in using the Almon distributed lag tech-

nique, as the results might be sensitive to the choice of the degree of the polynomial and/or
the number of lagged coefficients.

17.14 Causality in Economics: The Granger Causality Test54

Back in Section 1.4 we noted that, although regression analysis deals with the dependence
of one variable on other variables, it does not necessarily imply causation. In other words,
the existence of a relationship between variables does not prove causality or the direction

53For a concrete application, see D. B. Batten and Daniel Thornton, “Polynomial Distributed Lags and the
Estimation of the St. Louis Equation,” Review, Federal Reserve Bank of St. Louis, April 1983, pp. 13–25.
54There is another test of causality that is sometimes used, the so-called Sims test of causality. We
discuss it by way of an exercise.

guj75772_ch17.qxd  22/08/2008  07:55 PM  Page 652



Chapter 17 Dynamic Econometric Models: Autoregressive and Distributed-Lag Models 653

of influence. But in regressions involving time series data, the situation may be somewhat
different because, as one author puts it,

. . . time does not run backward. That is, if event A happens before event B, then it is possible
that A is causing B. However, it is not possible that B is causing A. In other words, events in the
past can cause events to happen today. Future events cannot.55 [Emphasis added.]

This is roughly the idea behind the so-called Granger causality test.56 But it should be noted
clearly that the question of causality is deeply philosophical with all kinds of controversies.
At one extreme are people who believe that “everything causes everything,” and at the other
extreme are people who deny the existence of causation whatsoever.57 The econometrician
Edward Leamer prefers the term precedence over causality. Francis Diebold prefers the
term predictive causality. As he writes:

. . . the statement “yi causes yj” is just shorthand for the more precise, but long-winded,
statement, “yi contains useful information for predicting yj (in the linear least squares
sense), over and above the past histories of the other variables in the system.” To save
space, we simply say that yi causes yj.58

The Granger Test 
To explain the Granger test, we will consider the often asked question in macroeconomics:
Is it GDP that “causes” the money supply M (GDP → M)? Or is it the money supply M
that causes GDP (M → GDP)? (where the arrow points to the direction of causality). The
Granger causality test assumes that the information relevant to the prediction of the
respective variables, GDP and M, is contained solely in the time series data on these
variables. The test involves estimating the following pair of regressions:

GDPt =
n∑

i=1

αi Mt−i +
n∑

j=1

βj GDPt− j + u1t (17.14.1)

Mt =
n∑

i=1

λi Mt−i +
n∑

j=1

δj GDPt− j + u2t (17.14.2)

where it is assumed that the disturbances u1t and u2t are uncorrelated. In passing, note that, since
we have two variables, we are dealing with bilateral causality. In the chapters on time series
econometrics, we will extend this to multivariable causality through the technique of vector
autoregression (VAR).

Equation (17.14.1) postulates that current GDP is related to past values of itself as well as
that of M, and Eq. (17.14.2) postulates a similar behavior for M. Note that these regressions can

55Gary Koop, Analysis of Economic Data, John Wiley & Sons, New York, 2000, p. 175.
56C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-Spectral Meth-
ods,” Econometrica, July 1969, pp. 424–438. Although popularly known as the Granger causality test,
it is appropriate to call it the Wiener–Granger causality test, for it was earlier suggested by
Wiener. See N. Wiener, “The Theory of Prediction,” in E. F. Beckenback, ed., Modern Mathematics for
Engineers, McGraw-Hill, New York, 1956, pp. 165–190.
57For an excellent discussion of this topic, see Arnold Zellner, “Causality and Econometrics,” Carnegie-
Rochester Conference Series, 10, K. Brunner and A. H. Meltzer, eds., North Holland Publishing
Company, Amsterdam, 1979, pp. 9–50.
58Francis X. Diebold, Elements of Forecasting, South Western Publishing, 2d ed., 2001, p. 254.
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be cast in growth forms, ˙GDP and Ṁ, where a dot over a variable indicates its growth rate. We
now distinguish four cases:

1. Unidirectional causality from M to GDP is indicated if the estimated coefficients on the
lagged M in Eq. (17.14.1) are statistically different from zero as a group and the set of
estimated coefficients on the lagged GDP in Eq. (17.14.2) is not statistically different
from zero.

2. Conversely, unidirectional causality from GDP to M exists if the set of lagged M coeffi-
cients in Eq. (17.14.1) is not statistically different from zero and the set of the lagged
GDP coefficients in Eq. (17.14.2) is statistically different from zero.

3. Feedback, or bilateral causality, is suggested when the sets of M and GDP coefficients
are statistically significantly different from zero in both regressions.

4. Finally, independence is suggested when the sets of M and GDP coefficients are not sta-
tistically significant in either of the regressions.

More generally, since the future cannot predict the past, if variable X (Granger) causes
variable Y, then changes in X should precede changes in Y. Therefore, in a regression of Y
on other variables (including its own past values) if we include past or lagged values of X
and it significantly improves the prediction of Y, then we can say that X (Granger) causes Y.
A similar definition applies if Y (Granger) causes X.

The steps involved in implementing the Granger causality test are as follows. We illus-
trate these steps with the GDP-money example given in Eq. (17.14.1).

1. Regress current GDP on all lagged GDP terms and other variables, if any, but do not
include the lagged M variables in this regression. As per Chapter 8, this is the
restricted regression. From this regression obtain the restricted residual sum of
squares, RSSR.

2. Now run the regression including the lagged M terms. In the language of Chapter 8, this
is the unrestricted regression. From this regression obtain the unrestricted residual sum
of squares, RSSUR.

3. The null hypothesis is H0: αi = 0, i = 1, 2, . . . , n, that is, lagged M terms do not be-
long in the regression.

4. To test this hypothesis, we apply the F test given by Eq. (8.7.9), namely,

F = (RSSR − RSSUR)/m

RSSUR/(n − k)
(8.7.9)

which follows the F distribution with m and (n − k) df. In the present case m is equal to
the number of lagged M terms and k is the number of parameters estimated in the unre-
stricted regression.

5. If the computed F value exceeds the critical F value at the chosen level of significance, we
reject the null hypothesis, in which case the lagged M terms belong in the regression. This
is another way of saying that M causes GDP.

6. Steps 1 to 5 can be repeated to test the model (17.14.2), that is, whether GDP causes M.

Before we illustrate the Granger causality test, there are several things that need to be
noted:

1. It is assumed that the two variables, GDP and M, are stationary. We have already dis-
cussed the concept of stationarity in intuitive terms before and will discuss it more for-
mally in Chapter 21. Sometimes taking the first differences of the variables makes them
stationary, if they are not already stationary in the level form.
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59For further details, see Wojciech W. Charemza and Derek F. Deadman, New Directions in Econometric
Practice: General to Specific Modelling, Cointegration and Vector Autoregression, 3d ed., Edward Elgar
Publishing, 1997, Chapter 6.
60On this, see J. H. Stock and M. W. Watson, “Interpreting the Evidence on Money-Income Causality,”
Journal of Econometrics, vol. 40, 1989, pp. 783–820.
61R. W. Hafer, “The Role of Fiscal Policy in the St. Louis Equation,” Review, Federal Reserve Bank of 
St. Louis, January 1982, pp. 17–22. See his footnote 12 for the details of the procedure.

EXAMPLE 17.12
Causality between
Money and
Income

R. W. Hafer used the Granger test to find out the nature of causality between GNP (rather
than GDP) and M for the United States for the period 1960–I to 1980–IV. Instead of using
the gross values of these variables, he used their growth rates, ˙GNP and Ṁ, and used four
lags of each variable in the two regressions given previously. The results were as follows:61

The null hypothesis in each case is that the variable under consideration does not
“Granger-cause” the other variable.

Direction of Causality F Value Decision

Ṁ → ˙GNP 2.68 Reject
˙GNP → Ṁ 0.56 Do not reject

These results suggest that the direction of causality is from money growth to GNP
growth since the estimated F is significant at the 5 percent level; the critical F value is 2.50
(for 4 and 71 df). On the other hand, there is no “reverse causation” from GNP growth to
money growth, since the F value is statistically insignificant.

EXAMPLE 17.13
Causality between
Money and
Interest Rate in
Canada

Refer to the Canadian data given in Table 17.5. Suppose we want to find out if there is any
causality between money supply and interest rate in Canada for the quarterly periods of
1979–1988. To show that the Granger causality test depends critically on the number of
lagged terms introduced in the model, we present below the results of the F test using
several (quarterly) lags. In each case, the null hypothesis is that interest rate does not
(Granger-) cause money supply and vice versa.

2. The number of lagged terms to be introduced in the causality tests is an important prac-
tical question. As in the case of the distributed-lag models, we may have to use the Akaike
or Schwarz information criterion to make the choice. But it should be added that the
direction of causality may depend critically on the number of lagged terms included.

3. We have assumed that the error terms entering the causality test are uncorrelated. If this
is not the case, appropriate transformation, as discussed in Chapter 12, may have to be
taken.59

4. Since our interest is in testing for causality, one need not present the estimated coeffi-
cients of models (17.14.1) and (17.14.2) explicitly (to save space); just the results of the
F test given in Eq. (8.7.9) will suffice.

5. One has to guard against “spurious” causality. In our GDP-money example, suppose we
consider interest rate, say the short-term interest rate. It is quite possible that money
“Granger-causes” the interest rate and the interest rate in turn “Granger-causes” GDP.
Therefore, if we do not account for the interest rate, and find that it is money that causes
GDP, then, the observed causality between GDP and money may be spurious.60 As noted
previously, one way of dealing with this is to consider a multiple-equation system, such as
vector autoregression (VAR), which we will discuss in some length in Chapter 22.

(Continued )
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EXAMPLE 17.14
Causality between
GDP Growth Rate
and Gross Savings
Rate in Nine East
Asian Countries

A study of the bilateral causality between GDP growth rate (g) and gross savings rate (s)
showed the results given in Table 17.9.62 For comparison, the results for the United States
are also presented in the table. By and large, the results presented in Table 17.9 show that
for most East Asian countries the causality runs from the GDP growth rate to the gross
savings rate. By contrast, for the United States for the period 1950–1988 up to lag 3,
causality ran in both directions, but for lags 4 and 5, the causality ran from the GDP
growth rate to the savings rate but not the other way round.

62These results are obtained from The East Asian Miracle: Economic Growth and Public Policy, published
for the World Bank by Oxford University Press, 1993, p. 244.

Lagged Right-hand Lagged Right-hand
Economy, Years Side Variable Economy, Years Side Variable

Years of Lags Savings Growth Years of Lags Savings Growth

Hong Kong, 1 Sig Sig Philippines, 1 NS Sig
1960–88 2 Sig Sig 1950–88 2 NS Sig

3 Sig Sig 3 NS Sig
4 Sig Sig 4 NS Sig
5 Sig Sig 5 NS Sig

Indonesia, 1 Sig Sig Singapore, 1 NS NS
1965 2 NS Sig 1960–88 2 NS NS

3 NS Sig 3 NS NS
4 NS Sig 4 Sig NS
5 NS Sig 5 Sig NS

Japan, 1 NS Sig Taiwan, China, 1 Sig Sig
1950–88 2 NS Sig 1950–88 2 NS Sig

3 NS Sig 3 NS Sig
4 NS Sig 4 NS Sig
5 NS Sig 5 NS Sig

Korea, Rep. of, 1 Sig Sig Thailand, 1 NS Sig
1955–88 2 NS Sig 1950–88 2 NS Sig

3 NS Sig 3 NS Sig
4 NS Sig 4 NS Sig
5 NS Sig 5 NS Sig

Malaysia, 1 Sig Sig United States, 1 Sig Sig
1955–88 2 Sig Sig 1950–88 2 Sig Sig

3 NS NS 3 Sig Sig
4 NS NS 4 NS Sig
5 NS Sig 5 NS Sig

Sig: Significant; NS: Not significant.
Note: Growth is real per capita GDP growth at 1985 international prices.

TABLE 17.9
Tests of Bivariate
Granger Causality
between the Real
Per Capita GDP
Growth Rate
and the Gross
Savings Rate

Source: World Bank, The
East Asian Miracle:
Economic Growth and
Public Policy, Oxford
University Press, New
York, 1993, p. 244,
(Table A5-2). The original
source is Robert Summers
and Alan Heston, “The
Penn World Tables (Mark 5):
An Expanded Set of
International Comparisons,
1950–88,” Quarterly
Journal of Economics,
vol. 105, no. 2, 1991.

Direction of Causality Number of Lags F Value Decision

R → M 2 12.92 Reject
M → R 2 3.22 Reject
R → M 4 5.59 Reject
M → R 4 2.45 Reject (at 7%)
R → M 6 3.5163 Reject
M → R 6 2.71 Reject
R → M 8 1.40 Do not reject
M → R 8 1.62 Do not reject

Note these features of the preceding results of the F test: Up to six lags, there is bilateral
causality between money supply and interest rate. However, at eight lags, there is no
statistically discernible relationship between the two variables. This reinforces the point
made earlier that the outcome of the Granger test is sensitive to the number of lags intro-
duced in the model.

EXAMPLE 17.13
(Continued)
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*A Note on Causality and Exogeneity
As we will study in the chapters on simultaneous-equation models in Part 4 of this text, eco-
nomic variables are often classified into two broad categories, endogenous and exogenous.
Loosely speaking, endogenous variables are the equivalent of the dependent variable in the
single-equation regression model and exogenous variables are the equivalent of the X vari-
ables, or regressors, in such a model, provided the X variables are uncorrelated with the error
term in that equation.63

Now we raise an interesting question: Suppose in a Granger causality test we find that
an X variable (Granger-) causes a Y variable without being caused by the latter (i.e., no
bilateral causality). Can we then treat the X variable as exogenous? In other words, can we
use Granger causality (or noncausality) to establish exogeneity?

To answer this question, we need to distinguish three types of exogeneity: (1) weak,
(2) strong, and (3) super. To keep the exposition simple, suppose we consider only two vari-
ables, Yt and Xt, and further suppose we regress Yt on Xt. We say that Xt is weakly exogenous
if Yt also does not explain Xt. In this case estimation and testing of the regression model can
be done, conditional on the values of Xt. As a matter of fact, going back to Chapter 2, you
will realize that our regression modeling was conditional on the values of the X variables.
Xt is said to be strongly exogenous if current and lagged Y values do not explain it (i.e., no
feedback relationship). And Xt is super-exogenous if the parameters in the regression of Y
on X do not change even if the X values change; that is, the parameter values are invariant
to changes in the value(s) of X. If that is in fact the case, then, the famous “Lucas critique”
may lose its force.64

The reason for distinguishing the three types of exogeneity is that, “In general, weak
exogeneity is all that is needed for estimating and testing, strong exogeneity is necessary
for forecasting and super exogeneity for policy analysis.”65

Returning to Granger causality, if a variable, say Y, does not cause another variable, say
X, can we then assume that the latter is exogenous? Unfortunately, the answer is not
straightforward. If we are talking about weak exogeneity, it can be shown that Granger
causality is neither necessary nor sufficient to establish exogeneity. On the other hand,
Granger causality is necessary (but not sufficient) for strong exogeneity. The proofs of
these statements are beyond the scope of this book.66 For our purpose, then, it is better to

*Optional.
63Of course, if the explanatory variables include one or more lagged terms of the endogenous
variable, this requirement may not be fulfilled.
64The Nobel laureate Robert Lucas put forth the proposition that existing relations between economic
variables may change when policy changes, in which case the estimated parameters from a
regression model will be of little value for prediction. On this, see Oliver Blanchard, Macroeconomics,
Prentice Hall, 1997, pp. 371–372.
65Keith Cuthbertson, Stephen G. Hall, and Mark  P. Taylor, Applied Econometric Techniques, University
of Michigan Press, 1992, p. 100.
66For a comparatively simple discussion, see G. S. Maddala, Introduction to Econometrics, 2d ed.,
Macmillan, New York, 1992, pp. 394–395, and also David F. Hendry, Dynamic Econometrics, Oxford
University Press, New York, 1995, Chapter 5.

To conclude our discussion of Granger causality, keep in mind that the question we are
examining is whether statistically one can detect the direction of causality when temporally
there is a lead–lag relationship between two variables. If causality is established, it suggests
that one can use a variable to better predict the other variable than simply the past history
of that other variable. In the case of the East Asian economies, it seems that we can better
predict the gross savings rate by considering the lagged values of the GDP growth rate
than merely the lagged values of the gross savings rate.

EXAMPLE 17.14
(Continued)
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keep the concepts of Granger causality and exogeneity separate and treat the former as a
useful descriptive tool for time series data. In Chapter 19 we will discuss a test that can be
used to find out if a variable can be treated as exogenous.

67For applications of these models, see Arnold C. Harberger, ed., The Demand for Durable Goods,
University of Chicago Press, Chicago, 1960.

Summary and
Conclusions

1. For psychological, technological, and institutional reasons, a regressand may respond
to a regressor(s) with a time lag. Regression models that take into account time lags are
known as dynamic or lagged regression models.

2. There are two types of lagged models: distributed-lag and autoregressive. In the 
former, the current and lagged values of regressors are explanatory variables. In the
latter, the lagged value(s) of the regressand appears as an explanatory variable(s).

3. A purely distributed-lag model can be estimated by OLS, but in that case there is the
problem of multicollinearity since successive lagged values of a regressor tend to be
correlated.

4. As a result, some shortcut methods have been devised. These include the Koyck, the
adaptive expectations, and partial adjustment mechanisms, the first being a purely
algebraic approach and the other two being based on economic principles.

5. A unique feature of the Koyck,adaptive expectations, and partial adjustment models
is that they all are autoregressive in nature in that the lagged value(s) of the regressand
appears as one of the explanatory variables.

6. Autoregressiveness poses estimation challenges; if the lagged regressand is correlated
with the error term, OLS estimators of such models are not only biased but also are
inconsistent. Bias and inconsistency are the case with the Koyck and the adaptive
expectations models; the partial adjustment model is different in that it can be consis-
tently estimated by OLS despite the presence of the lagged regressand.

7. To estimate the Koyck and adaptive expectations models consistently, the most popu-
lar method is the method of instrumental variable. The instrumental variable is a
proxy variable for the lagged regressand but with the property that it is uncorrelated
with the error term.

8. An alternative to the lagged regression models just discussed is the Almon polynomial
distributed-lag model, which avoids the estimation problems associated with the
autoregressive models. The major problem with the Almon approach, however, is that
one must prespecify both the lag length and the degree of the polynomial. There are
both formal and informal methods of resolving the choice of the lag length and the
degree of the polynomial.

9. Despite the estimation problems, which can be surmounted, the distributed and
autoregressive models have proved extremely useful in empirical economics because
they make the otherwise static economic theory a dynamic one by taking into account
explicitly the role of time. Such models help us to distinguish between the short- and
the long-run responses of the dependent variable to a unit change in the value of the
explanatory variable(s). Thus, for estimating short- and long-run price, income,
substitution, and other elasticities these models have proved to be highly useful.67

10. Because of the lags involved, distributed and/or autoregressive models raise the topic
of causality in economic variables. In applied work, Granger causality modeling has
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received considerable attention. But one has to exercise great caution in using the
Granger methodology because it is very sensitive to the lag length used in the model.

11. Even if a variable (X) “Granger-causes” another variable (Y), it does not mean that X is
exogenous. We distinguished three types of exogeneity—weak, strong, and super—
and pointed out the importance of the distinction.

*Adapted from G. K. Shaw, op. cit., p. 26.

EXERCISES Questions
17.1. Explain with a brief reason whether the following statements are true, false, or

uncertain:

a. All econometric models are essentially dynamic.

b. The Koyck model will not make much sense if some of the distributed-lag coef-
ficients are positive and some are negative.

c. If the Koyck and adaptive expectations models are estimated by OLS, the esti-
mators will be biased but consistent.

d. In the partial adjustment model, OLS estimators are biased in finite samples.

e. In the presence of a stochastic regressor(s) and an autocorrelated error term,
the method of instrumental variables will produce unbiased as well as consistent
estimates.

f. In the presence of a lagged regressand as a regressor, the Durbin–Watson d sta-
tistic to detect autocorrelation is practically useless.

g. The Durbin h test is valid in both large and small samples.

h. The Granger test is a test of precedence rather than a test of causality.

17.2. Establish Eq. (17.7.2).

17.3. Prove Eq. (17.8.3).

17.4. Assume that prices are formed according to the following adaptive expectations 
hypothesis:

P∗
t = γPt−1 + (1 − γ ) P∗

t−1

where P* is the expected price and P the actual price.

Complete the following table, assuming γ = 0.5:*

Period P* P

t − 3 100 110
t − 2 125
t − 1 155
t 185
t + 1 —

17.5. Consider the model

Yt = α + β1 X1t + β2 X2t + β3Yt−1 + vt
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Suppose Yt−1 and vt are correlated. To remove the correlation, suppose we use the
following instrumental variable approach: First regress Yt on X1t and X2t and obtain
the estimated Ŷt from this regression. Then regress

Yt = α + β1 X1t + β2 X2t + β3Ŷt−1 + vt

where Ŷt−1 are estimated from the first-stage regression.

a. How does this procedure remove the correlation between Yt−1 and vt in the orig-
inal model?

b. What are the advantages of the recommended procedure over the Liviatan
approach?

*17.6. a. Establish (17.4.8).

b. Evaluate the median lag for λ = 0.2, 0.4, 0.6, 0.8.

c. Is there any systematic relationship between the value of λ and the value of the
median lag?

17.7. a. Prove that for the Koyck model, the mean lag is as shown in Eq. (17.4.10).

b. If λ is relatively large, what are its implications?

17.8. Using the formula for the mean lag given in Eq. (17.4.9), verify the mean lag of
10.959 quarters reported in the illustration of Table 17.1.

17.9. Suppose

Mt = α + β1Y ∗
t + β2 R∗

t + ut

where M = demand for real cash balances, Y* = expected real income, and R* =
expected interest rate. Assume that expectations are formulated as follows:

Y ∗
t = γ1Yt + (1 − γ1)Y ∗

t−1

R∗
t = γ2 Rt + (1 − γ2)R∗

t−1

where γ1 and γ2 are coefficients of expectation, both lying between 0 and 1.

a. How would you express Mt in terms of the observable quantities?

b. What estimation problems do you foresee?

*17.10. If you estimate Eq. (17.7.2) by OLS, can you derive estimates of the original pa-
rameters? What problems do you foresee? (For details, see Roger N. Waud.)†

17.11. Serial correlation model. Consider the following model:

Yt = α + βXt + ut

Assume that ut follows the Markov first-order autoregressive scheme given in
Chapter 12, namely,

ut = ρut−1 + εt

where ρ is the coefficient of (first-order) autocorrelation and where εt satisfies all
the assumptions of the classical OLS. Then, as shown in Chapter 12, the model

Yt = α(1 − ρ) + β(Xt − ρXt−1) + ρYt−1 + εt

will have a serially independent error term, making OLS estimation possible. But
this model, called the serial correlation model, very much resembles the Koyck,

*Optional.
†“Misspecification in the ‘Partial Adjustment’ and ‘Adaptive Expectations’ Models,” International
Economic Review, vol. 9, no. 2, June 1968, pp. 204–217.
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adaptive expectations, and partial adjustment models. How would you know in any
given situation which of the preceding models is appropriate?*

17.12. Consider the Koyck (or, for that matter, the adaptive expectations) model given in
Eq. (17.4.7), namely,

Yt = α(1 − λ) + β0 Xt + λYt−1 + (ut − λut−1)

Suppose in the original model ut follows the first-order autoregressive scheme
ut − ρu1−t = εt , where ρ is the coefficient of autocorrelation and where εt satis-
fies all the classical OLS assumptions.

a. If ρ = λ, can the Koyck model be estimated by OLS?

b. Will the estimates thus obtained be unbiased? Consistent? Why or why not?

c. How reasonable is it to assume that ρ = λ?

17.13. Triangular, or arithmetic, distributed-lag model.† This model assumes that the
stimulus (explanatory variable) exerts its greatest impact in the current time period
and then declines by equal decrements to zero as one goes into the distant past.
Geometrically, it is shown in Figure 17.9. Following this distribution, suppose we
run the following succession of regressions:

Yt = α + β

(
2Xt + Xt−1

3

)

Yt = α + β

(
3Xt + 2Xt−1 + Xt−2

6

)

Yt = α + β

(
4Xt + 3Xt−1 + 2Xt−2 + Xt−1

10

)

etc., and choose the regression that gives the highest R2 as the “best’’ regression.
Comment on this strategy.

*For a discussion of the serial correlation model, see Zvi Griliches, “Distributed Lags: A Survey,”
Econometrica, vol. 35, no. 1, January 1967, p. 34.
†This model was proposed by Irving Fisher in “Note on a Short-Cut Method for Calculating Distrib-
uted Lags,” International Statistical Bulletin, 1937, pp. 323–328.

0
Time

kβFIGURE 17.9
Triangular or
arithmetic lag scheme
(Fisher’s).
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17.14. From the quarterly data for the period 1950–1960, F. P. R. Brechling obtained the
following demand function for labor for the British economy (the figures in paren-
theses are standard errors):*

̂̇Et = 14.22 + 0.172Qt − 0.028t − 0.0007t2 − 0.297Et−1

(2.61) (0.014) (0.015) (0.0002) (0.033)

R̄2 = 0.76 d = 1.37

where Ėt = (Et − Et−1)
Q = output
t = time

The preceding equation was based on the assumption that the desired level of em-
ployment E∗

t is a function of output, time, and time squared and on the hypothesis
that Et − Et−1 = δ(E∗

t − Et−1), where δ, the coefficient of adjustment, lies
between 0 and 1.

a. Interpret the preceding regression.

b. What is the value of δ?

c. Derive the long-run demand function for labor from the estimated short-run
demand function.

d. How would you test for serial correlation in the preceding model?

17.15. In studying the farm demand for tractors, Griliches used the following model:†

T ∗
t = αXβ1

1,t−1 Xβ2
2,t−1

where T* = desired stock of tractors
X1 = relative price of tractors
X2 = interest rate

Using the stock adjustment model, he obtained the following results for the period
1921–1957:

l̂og Tt = constant − 0.218 log X1,t−1 − 0.855 log X2,t−1 + 0.864 log Tt−1

(0.051) (0.170) (0.035)

R2 = 0.987

where the figures in the parentheses are the estimated standard errors.

a. What is the estimated coefficient of adjustment?

b. What are the short- and long-run price elasticities?

c. What are the corresponding interest elasticities?

d. What are the reasons for high or low rate of adjustment in the present model?

17.16. Whenever the lagged dependent variable appears as an explanatory variable, the R2

is usually much higher than when it is not included. What are the reasons for this
observation?

*F. P. R. Brechling, “The Relationship between Output and Employment in British Manufacturing
Industries,” Review of Economic Studies, vol. 32, July 1965.
†Zvi Griliches, “The Demand for a Durable Input: Farm Tractors in the United States, 1921–1957,” in
Arnold C. Harberger, ed., The Demand for Durable Goods, University of Chicago Press, Chicago, 1960.

guj75772_ch17.qxd  22/08/2008  12:09 PM  Page 662



Chapter 17 Dynamic Econometric Models: Autoregressive and Distributed-Lag Models 663

17.17. Consider the lag patterns in Figure 17.10. What degree polynomials would you fit
to the lag structures and why?

17.18. Consider Eq. (17.13.4):

βi = a0 + a1i + a2i2 + · · · + amim

To obtain the variance of β̂i from the variances of âi , we use the following formula:

var (β̂i ) = var (â0 + â1i + â2i2 + · · · + âmim)

=
m∑

j=0

i2 j var (âj ) + 2
∑
j<p

i ( j+p)cov (âj âp)

a. Using the preceding formula, find the variance of β̂i expressed as

β̂i = â0 + â1i + â2i2

β̂i = â0 + â1i + â2i2 + â3i3

b. If the variances of âi are large relative to themselves, will the variance of β̂i be
large also? Why or why not?

17.19. Consider the following distributed-lag model:

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + β3 Xt−3 + β4 Xt−4 + ut
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FIGURE 17.10
Hypothetical lag
structures.
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iβ

kβ
i

0 1 2 3

Lag

FIGURE 17.11
Inverted V distributed-
lag model.

*See his article, “The Demand for Capital Goods by Manufacturers: A Study of Quarterly Time Series,”
Econometrica, vol. 30, no. 3, July 1962, pp. 407–423.

Assume that βi can be adequately expressed by the second-degree polynomial as
follows:

βi = a0 + a1i + a2i2

How would you estimate the β’s if we want to impose the restriction that
β0 = β4 = 0?

17.20. The inverted V distributed-lag model. Consider the k-period finite distributed-lag
model

Yt = α + β0 Xt + β1 Xt−1 + β2 Xt−2 + · · · + βk Xt−k + ut

F. DeLeeuw has proposed the structure for the β’s as in Figure 17.11, where the β’s
follow the inverted V shape. Assuming for simplicity that k (the maximum length
of the lag) is an even number, and further assuming that β0 and βk are zero,
DeLeeuw suggests the following scheme for the β’s:* 

βi = iβ 0 ≤ i ≤ k

2

= (k − i)β
k

2
≤ i < k

How would you use the DeLeeuw scheme to estimate the parameters of the pre-
ceding k-period distributed-lag model?

17.21. Refer to Exercise 12.15. Since the d value shown there is of little use in detecting
(first-order) autocorrelation (why?), how would you test for autocorrelation in this
case?

Empirical Exercises
17.22. Consider the following model:

Y ∗
i = α + β0 Xt + ut

where Y ∗ = desired, or long-run, business expenditure for new plant and equip-
ment, Xt = sales, and t = time. Using the stock adjustment model, estimate the
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parameters of the long- and short-run demand function for expenditure on new
plant and equipment given in Table 17.10.

How would you find out if there is serial correlation in the data?

17.23. Use the data of Exercise 17.22 but consider the following model:

Y ∗
i = β0 Xβ1

t eut

Using the stock adjustment model (why?), estimate the short- and long-run elastic-
ities of expenditure on new plant and equipment with respect to sales. Compare
your results with those for Exercise 17.22. Which model would you choose and
why? Is there serial correlation in the data? How do you know?

17.24. Use the data of Exercise 17.22 but assume that

Yt = α + βX∗
t + ut

where X∗
t are the desired sales. Estimate the parameters of this model and compare

the results with those obtained in Exercise 17.22. How would you decide which is
the appropriate model? On the basis of the h statistic, would you conclude there
is serial correlation in the data?

17.25. Suppose someone convinces you that the relationship between business expendi-
ture for new plant and equipment and sales is as follows:

Y ∗
t = α + βX∗

t + ut

where Y ∗ is desired expenditure and X∗ is desired or expected sales. Use the data
given in Exercise 17.22 to estimate this model and comment on your results.

17.26. Using the data given in Exercise 17.22, determine whether plant expenditure
Granger-causes sales or whether sales Granger-cause plant expenditure. Use up to
six lags and comment on your results. What important conclusion do you draw
from this exercise?

17.27. Assume that sales in Exercise 17.22 has a distributed-lag effect on expenditure on
plant and equipment. Fit a suitable Almon lag model to the data.

17.28. Reestimate Eq. (17.13.16) imposing (1) near-end restriction, (2) far-end restriction,
and (3) both end restrictions and compare your results given in Eq. (17.13.16).
What general conclusion do you draw?

TABLE 17.10
Investment in Fixed
Plant and Equipment
in Manufacturing Y
and Manufacturing
Sales X2 in Billions of
Dollars, Seasonally
Adjusted,
United States,
1970–1991

Source: Economic Report of
the President, 1993. Data on
Y from Table B-52, p. 407;
data on X2 from Table 8-53,
p. 408.

Year Plant Expenditure, Y Sales, X2 Year Plant Expenditure, Y Sales, X2

1970 36.99 52.805 1981 128.68 168.129
1971 33.60 55.906 1982 123.97 163.351
1972 35.42 63.027 1983 117.35 172.547
1973 42.35 72.931 1984 139.61 190.682
1974 52.48 84.790 1985 152.88 194.538
1975 53.66 86.589 1986 137.95 194.657
1976 58.53 98.797 1987 141.06 206.326
1977 67.48 113.201 1988 163.45 223.541
1978 78.13 126.905 1989 183.80 232.724
1979 95.13 143.936 1990 192.61 239.459
1980 112.60 154.391 1991 182.81 235.142
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17.29. Table 17.11 gives data on private fixed investment in information processing and
equipment (Y, in billions of dollars), sales in total manufacturing and trade (X2, in
millions of dollars), and interest rate (X3, Moody’s Aaa corporate bond rate, per-
cent); data on Y and X2 are seasonally adjusted.

a. Test for bilateral causality between Y and X2, paying careful attention to the lag
length.

b. Test for bilateral causality between Y and X3, again paying careful attention to the lag
length.

c. To allow for the distributed lag effect of sales on investment, suppose you decide
to use the Almon lag technique. Show the estimated model, after paying due at-
tention to the length of the lag as well as the degree of the polynomial.

17.30. Table 17.12 gives data on indexes of real compensation per hour (Y) and output per
hour (X2), with both indexes to base 1992 = 100, in the business sector of the U.S.
economy for the period 1960–1999, as well as the civilian unemployment rate (X3)
for the same period.

a. How would you decide whether it is wage compensation that determines labor
productivity or the other way round?

b. Develop a suitable model to test your conjecture in (a), providing the usual statistics.

c. Do you think the unemployment rate has any effect on wage compensation, and if
so, how would you take that into account? Show the necessary statistical analysis.

TABLE 17.11 Investments, Sales, and Interest Rate, United States, 1960–1999

Observation Investment Sales Interest Observation Investment Sales Interest

1960 4.9 60,827 4.41 1980 69.6 327,233 11.94
1961 5.2 61,159 4.35 1981 82.4 355,822 14.17
1962 5.7 65,662 4.33 1982 88.9 347,625 13.79
1963 6.5 68,995 4.26 1983 100.8 369,286 12.04
1964 7.3 73,682 4.40 1984 121.7 410,124 12.71
1965 8.5 80,283 4.49 1985 130.8 422,583 11.37
1966 10.6 87,187 5.13 1986 137.6 430,419 9.02
1967 11.2 90,820 5.51 1987 141.9 457,735 9.38
1968 11.9 96,685 6.18 1988 155.9 497,157 9.71
1969 14.6 105,690 7.03 1989 173.0 527,039 9.26
1970 16.7 108,221 8.04 1990 176.1 545,909 9.32
1971 17.3 116,895 7.39 1991 181.4 542,815 8.77
1972 19.3 131,081 7.21 1992 197.5 567,176 8.14
1973 23.0 153,677 7.44 1993 215.0 595,628 7.22
1974 26.8 177,912 8.57 1994 233.7 639,163 7.96
1975 28.2 182,198 8.83 1995 262.0 684,982 7.59
1976 32.4 204,150 8.43 1996 287.3 718,113 7.37
1977 38.6 229,513 8.02 1997 325.2 753,445 7.26
1978 48.3 260,320 8.73 1998 367.4 779,413 6.53
1979 58.6 297,701 9.63 1999 433.0 833,079 7.04

Notes: Investment = private fixed investment in information processing equipment and software, billions of dollars, seasonally adjusted.
Sales = sales in total manufacturing and trade, millions of dollars, seasonally adjusted.

Interest = Moody’s Aaa corporate bond rate, %.

Source: Economic Report of the President, 2001, Tables B-18, B-57, and B-73.

guj75772_ch17.qxd  22/08/2008  12:09 PM  Page 666



Chapter 17 Dynamic Econometric Models: Autoregressive and Distributed-Lag Models 667

17.31. In a test of Granger causality, Christopher Sims exploits the fact that the  future
cannot cause the present.* To decide whether a variable Y causes a variable X, Sims
suggests estimating the following pair of equations:

Yt = α1 +
i=n∑
i=1

βi Xt−i +
i=m∑
i=1

γi Yt−i +
i=p∑
i=1

λi Xt+i + u1t (1)

Xt = α2 +
i=n∑
i=1

δi Xt−i +
i=m∑
i=1

θi Yt−i +
i=p∑
i=1

ωi Yt+i + u2t (2)

These regressions include the lagged, current, and future, or lead, values of the
regressors; terms such as Xt+1,  Xt+2, etc., are called lead terms.

If Y is to Granger-cause X, then there must be some relationship between Y and
the lead, or future, values of X. Therefore, instead of testing that 
βi = 0, we should
test 
λi = 0 in Eq. (1). If we reject this hypothesis, the causality then runs from Y
to X, and not from X to Y, because the future cannot cause the present. Similar com-
ments apply to Equation (2).

TABLE 17.12 Compensation, Productivity and Unemployment Rate, United States, 1960–1999

Observation COMP PRODUCT UNRate Observation COMP PRODUCT UNRate

1960 60.0 48.8 5.5 1980 89.5 80.4 7.1
1961 61.8 50.6 6.7 1981 89.5 82.0 7.6
1962 63.9 52.9 5.5 1982 90.9 81.7 9.7
1963 65.4 55.0 5.7 1983 91.0 84.6 9.6
1964 67.9 57.5 5.2 1984 91.3 87.0 7.5
1965 69.4 59.6 4.5 1985 92.7 88.7 7.2
1966 71.9 62.0 3.8 1986 95.8 91.4 7.0
1967 73.8 63.4 3.8 1987 96.3 91.9 6.2
1968 76.3 65.4 3.6 1988 97.3 93.0 5.5
1969 77.4 65.7 3.5 1989 95.9 93.9 5.3
1970 78.9 67.0 4.9 1990 96.5 95.2 5.6
1971 80.4 69.9 5.9 1991 97.5 96.3 6.8
1972 82.7 72.2 5.6 1992 100.0 100.0 7.5
1973 84.5 74.5 4.9 1993 99.9 100.5 6.9
1974 83.5 73.2 5.6 1994 99.7 101.9 6.1
1975 84.4 75.8 8.5 1995 99.3 102.6 5.6
1976 86.8 78.5 7.7 1996 99.7 105.4 5.4
1977 87.9 79.8 7.1 1997 100.4 107.6 4.9
1978 89.5 80.7 6.1 1998 104.3 110.5 4.5
1979 89.7 80.7 5.8 1999 107.3 114.0 4.2

Notes: COMP = index of real compensation per hour (1992 = 100).
PRODUCT = index of output per hour (1992 = 100).

UNRate = civilian unemployment rate, %.

Source: Economic Report of the President, 2001, Table B-49, p. 332.

*C. A. Sims, “Money, Income, and Causality,” American Economic Review, vol. 62, 1972, 
pp. 540–552.
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To carry out the Sims test, we estimate Eq. (1) without the lead terms (call it
restricted regression) and then estimate Eq. (1) with the lead terms (call it
unrestricted regression). Then we carry out the F test as indicated in Equation
(8.7.9). If the F statistic is significant (say, at the 5% level), then we conclude that
it is Y that Granger-causes X. Similar comments apply to Equation (2).

Which test do we choose—Granger or Sims? We can apply both tests.* The one
factor that is in favor of the Granger test is that it uses fewer degrees of freedom

TABLE 17.13
Macroeconomic Data
for the Greek
Economy, 1960–1995

Source: H. R. Seddighi, K. A.
Lawler, and A. V. Katos,
Econometrics: A Practical
Approach, Routledge,
London, 2000, p. 158.

Year PC PDI Grossinv GNP LTI

1960 107808 117179 29121 145458 8
1961 115147 127599 31476 161802 8
1962 120050 135007 34128 164674 8
1963 126115 142128 35996 181534 8.25
1964 137192 159649 43445 196586 9
1965 147707 172756 49003 214922 9
1966 157687 182366 50567 228040 9
1967 167528 195611 49770 240791 9
1968 179025 204470 60397 257226 8.75
1969 190089 222638 71653 282168 8
1970 206813 246819 70663 304420 8
1971 217212 269249 80558 327723 8
1972 232312 297266 92977 356886 8
1973 250057 335522 100093 383916 9
1974 251650 310231 74500 369325 11.83
1975 266884 327521 74660 390000 11.88
1976 281066 350427 79750 415491 11.5
1977 293928 366730 85950 431164 12
1978 310640 390189 91100 458675 13.46
1979 318817 406857 99121 476048 16.71
1980 319341 401942 92705 485108 21.25
1981 325851 419669 85750 484259 21.33
1982 338507 421716 84100 483879 20.5
1983 339425 417930 83000 481198 20.5
1984 345194 434696 78300 490881 20.5
1985 358671 456576 82360 502258 20.5
1986 361026 439654 77234 507199 20.5
1987 365473 438454 73315 505713 21.82
1988 378488 476345 79831 529460 22.89
1989 394942 492334 87873 546572 23.26
1990 403194 495939 96139 546982 27.62
1991 412458 513173 91726 566586 29.45
1992 420028 502520 93140 568582 28.71
1993 420585 523066 91292 569724 28.56
1994 426893 520728 93073 579846 27.44
1995 433723 518407 98470 588691 23.05

Note: All nominal data are expressed at constant market prices of year 1970 in millions of drachmas. Private disposable income is deflated
by the consumption price deflator.

*The choice between Granger and Sims causality tests is not clear. For further discussion of these
tests, see G. Chamberlain, “The General Equivalence of Granger and Sims Causality,” Econometrica,
vol. 50, 1982, pp. 569–582.
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because it does not use the lead terms. If the sample is not sufficiently large, we will
have to use the Sims test cautiously.

Refer to the data given in Exercise 12.34. For pedagogical purposes, apply the
Sims test of causality to determine whether it is sales that causes plant expenditure
or vice versa. Use the last four years’ data as the lead terms in your analysis.

17.32. Table 17.13 gives some macroeconomic data for the Greek economy for the years
1960–1995.

Consider the following consumption function:

ln PC∗
t = β1 + β2 ln PDIt + β3LTIt + ut

Where PCt
* = real desired private consumption expenditure at time t; PDIt = real

private disposable income at time t; LTIt = long-term interest rate at time t; and ln
stands for natural logarithm.

a. From the data given in Table 17.13, estimate the previous consumption func-
tion, stating clearly how you measured the real desired private consumption
expenditure.

b. What econometric problems did you encounter in estimating the preceding con-
sumption function? How did you resolve them? Explain fully.

17.33. Using the data in Table 17.13, develop a suitable model to explain the behavior of
gross real investment in the Greek economy for the period 1960–1995. Look up any
textbook on macroeconomics for the accelerator model of investment.

Appendix 17A

17A.1 The Sargan Test for the Validity of Instruments

Suppose we use an instrumental variable(s) to replace an explanatory variable(s) that is correlated
with the error term. How valid is the instrumental variable(s), that is, how do we know that the in-
struments chosen are independent of the error term? Sargan has developed a statistic, dubbed SARG,
to test the validity of the instruments used in instrumental variable(s) (IV).* The steps involved in
SARG are as follows:†

1. Divide the variables included in a regression equation into two groups, those that are independent
of the error term (say, X1, X2, . . . , Xp) and those that are not independent of the error term (say,
Z1, Z2, . . . , Zq).

2. Let W1, W2, . . . , Ws be the instruments chosen for the Z variables in 1, where s > q.

3. Estimate the original regression, replacing the Z’s by the W’s, that is, estimate the original
regression by IV and obtain the residuals, say, û.

4. Regress û on a constant, all the X variables and all the W variables but exclude all the Z variables.
Obtain R2 from this regression.

5. Now compute the SARG statistic, defined as: 

SARG = (n − k)R2 ∼ χ2
s−q (17A.1.1)

*J. D. Sargan, “Wages and Prices in the United Kingdom: A Study in Econometric Methodology,” 
in P. E. Hart, G. Mills, and J. K. Whitaker (eds.) Econometric Analysis for National Economic Planning,
Butterworths, London, 1964.
†The following discussion leans on H. R. Seddighi, K. A. Lawler, and A. V. Katos, Econometrics: 
A Practical Approach, Routledge, New York, 2000, pp. 155–156.
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670 Part Three Topics in Econometrics

Where n = the number of observations and k is the number of coefficients in the original
regression equation. Under the null hypothesis that the instruments are exogenous, Sargan has
shown the SARG test asymptotically has the χ2 distribution with (s − q) degrees of freedom,
where s is the number of instruments (i.e., the variables in W) and q is the number of regressors in
the original equation. If the computed chi-square value in an application is statistically significant,
we reject the validity of the instruments. If it is not statistically significant, we can accept the
chosen instrument as valid. It should be emphasized that s > q , that is, the number of instruments
must be greater than q. If that is not the case (i.e., s ≤ q), the SARG test is not valid.

6. The null hypothesis is that all (W ) instruments are valid. If the computed chi-square exceeds the
critical chi-square value, we reject the null hypothesis, which means that at least one instrument
is correlated with the error term and therefore the IV estimates based on the chosen instruments
are not valid.
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Part 

A casual look at the published empirical work in business and economics will reveal that
many economic relationships are of the single-equation type. That is why we devoted the
first three parts of this book to the discussion of single-equation regression models. In such
models, one variable (the dependent variable Y ) is expressed as a linear function of one or
more other variables (the explanatory variables, the X ’s). In such models an implicit
assumption is that the cause-and-effect relationship, if any, between Y and the X ’s is unidi-
rectional: The explanatory variables are the cause and the dependent variable is the effect.

However, there are situations where there is a two-way flow of influence among economic
variables; that is, one economic variable affects another economic variable(s) and is, in turn,
affected by it (them). Thus, in the regression of money M on the rate of interest r, the single-
equation methodology assumes implicitly that the rate of interest is fixed (say, by the Federal
Reserve System) and tries to find out the response of money demanded to the changes in the
level of the interest rate. But what happens if the rate of interest depends on the demand for
money? In this case, the conditional regression analysis made in this book thus far may
not be appropriate because now M depends on r and r depends on M. Thus, we need to
consider two equations, one relating M to r and another relating r to M. And this leads us
to consider simultaneous-equation models, models in which there is more than one regres-
sion equation, one for each interdependent variable.

In Part 4 we present a very elementary and often heuristic introduction to the complex
subject of simultaneous-equation models, the details being left for the references.

In Chapter 18, we provide several examples of simultaneous-equation models and show
why the method of ordinary least squares considered previously is generally inapplicable in
estimating the parameters of each of the equations in the model.

In Chapter 19, we consider the so-called identification problem. If in a system of si-
multaneous equations containing two or more equations it is not possible to obtain numer-
ical values of each parameter in each equation because the equations are observationally
indistinguishable, or look too much like one another, then we have the identification

4
Simultaneous-
Equation Models 
and Time Series
Econometrics
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672 Part Four Simultaneous-Equation Models and Time Series Econometrics

problem. Thus, in the regression of quantity Q on price P, is the resulting equation a de-
mand function or a supply function (for Q and P enter into both functions)? Therefore, if
we have data on Q and P only and no other information, it will be difficult if not impossi-
ble to identify the regression as the demand or supply function. It is essential to resolve the
identification problem before we proceed to estimation because if we do not know what we
are estimating, estimation per se is meaningless. In Chapter 19 we offer various methods of
solving the identification problem.

In Chapter 20, we consider several estimation methods that are designed specifically for
estimating the simultaneous-equation models and consider their merits and limitations.
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Chapter 18
Simultaneous-Equation
Models
In this and the following two chapters we discuss the simultaneous-equation models. In
particular, we discuss their special features, their estimation, and some of the statistical
problems associated with them.

18.1 The Nature of Simultaneous-Equation Models

In Parts 1 to 3 of this text we were concerned exclusively with single-equation models, i.e.,
models in which there was a single dependent variable Y and one or more explanatory vari-
ables, the X ’s. In such models the emphasis was on estimating and/or predicting the aver-
age value of Y conditional upon the fixed values of the X variables. The cause-and-effect
relationship, if any, in such models therefore ran from the X ’s to the Y.

But in many situations, such a one-way or unidirectional cause-and-effect relationship is
not meaningful. This occurs if Y is determined by the X ’s, and some of the X ’s are, in turn,
determined by Y. In short, there is a two-way, or simultaneous, relationship between Y and
(some of) the X ’s, which makes the distinction between dependent and explanatory vari-
ables of dubious value. It is better to lump together a set of variables that can be determined
simultaneously by the remaining set of variables—precisely what is done in simultaneous-
equation models. In such models there is more than one equation—one for each of the
mutually, or jointly, dependent or endogenous variables.1 And unlike the single-equation
models, in the simultaneous-equation models one may not estimate the parameters of a
single equation without taking into account information provided by other equations in the
system.

What happens if the parameters of each equation are estimated by applying, say, the
method of ordinary least squares (OLS), disregarding other equations in the system? Recall
that one of the crucial assumptions of the method of OLS is that the explanatory X variables
are either nonstochastic or, if stochastic (random), distributed independently of the sto-
chastic disturbance term. If neither of these conditions is met, then, as shown later, the
least-squares estimators are not only biased but also inconsistent; that is, as the sample size

1In the context of the simultaneous-equation models, the jointly dependent variables are called
endogenous variables and the variables that are truly nonstochastic or can be so regarded are
called the exogenous, or predetermined, variables. (More on this in Chapter 19.)
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674 Part Four Simultaneous-Equation Models and Time Series Econometrics

increases indefinitely, the estimators do not converge to their true (population) values.
Thus, in the following hypothetical system of equations,2

Y1i = β10 + β12Y2i + γ11 X1i + u1i (18.1.1)

Y2i = β20 + β21Y1i + γ21 X1i + u2i (18.1.2)

where Y1 and Y2 are mutually dependent, or endogenous, variables and X1 is an exogenous
variable and where u1 and u2 are the stochastic disturbance terms, the variables Y1 and Y2

are both stochastic. Therefore, unless it can be shown that the stochastic explanatory vari-
able Y2 in Eq. (18.1.1) is distributed independently of u1 and the stochastic explanatory
variable Y1 in Eq. (18.1.2) is distributed independently of u2, application of the classical
OLS to these equations individually will lead to inconsistent estimates.

In the remainder of this chapter we give a few examples of simultaneous-equation mod-
els and show the bias involved in the direct application of the least-squares method to such
models. After discussing the so-called identification problem in Chapter 19, in Chapter 20
we discuss some of the special methods developed to handle the simultaneous-equation
models.

18.2 Examples of Simultaneous-Equation Models

2These economical but self-explanatory notations will be generalized to more than two equations in
Chapter 19.

EXAMPLE 18.1
Demand-and-
Supply Model

As is well known, the price P of a commodity and the quantity Q sold are determined by
the intersection of the demand-and-supply curves for that commodity. Thus, assuming for
simplicity that the demand-and-supply curves are linear and adding the stochastic distur-
bance terms u1 and u2, we may write the empirical demand-and-supply functions as:

Demand function: Qd
t = α0 + α1 Pt + u1t α1 < 0 (18.2.1)

Supply function: Qs
t = β0 + β1 Pt + u2t β1 > 0 (18.2.2)

Equilibrium condition: Qd
t = Qs

t

where Qd = quantity demanded
Qs = quantity supplied

t = time

and the α’s and β’s are the parameters. A priori, α1 is expected to be negative (down-
ward-sloping demand curve), and β1 is expected to be positive (upward-sloping supply
curve).

Now it is not too difficult to see that P and Q are jointly dependent variables. If, for
example, u1t in Eq. (18.2.1) changes because of changes in other variables affecting Qd

t
(such as income, wealth, and tastes), the demand curve will shift upward if u1t is positive
and downward if u1t is negative. These shifts are shown in Figure 18.1.

As the figure shows, a shift in the demand curve changes both P and Q. Similarly, a
change in u2t (because of strikes, weather, import or export restrictions, etc.) will shift
the supply curve, again affecting both P and Q. Because of this simultaneous dependence
between Q and P, u1t and Pt in Eq. (18.2.1) and u2t and Pt in Eq. (18.2.2) cannot be
independent. Therefore, a regression of Q on P as in Eq. (18.2.1) would violate an
important assumption of the classical linear regression model, namely, the assumption of
no correlation between the explanatory variable(s) and the disturbance term.
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Chapter 18 Simultaneous-Equation Models 675

EXAMPLE 18.2
Keynesian Model
of Income
Determination

Consider the simple Keynesian model of income determination:

Consumption function: Ct = β0 + β1Yt + ut 0 < β1 < 1 (18.2.3)

Income identity: Yt = C t + It ( = S t) (18.2.4)

where C = consumption expenditure
Y = income
I = investment (assumed exogenous)
S = savings
t = time
u = stochastic disturbance term

β0 and β1 = parameters

The parameter β1 is known as the marginal propensity to consume (MPC) (the amount
of extra consumption expenditure resulting from an extra dollar of income). From eco-
nomic theory, β1 is expected to lie between 0 and 1. Equation (18.2.3) is the (stochastic)
consumption function; and Eq. (18.2.4) is the national income identity, signifying that total
income is equal to total consumption expenditure plus total investment expenditure, it
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FIGURE 18.1 Interdependence of price and quantity.

(Continued)

EXAMPLE 18.1
(Continued)
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676 Part Four Simultaneous-Equation Models and Time Series Econometrics

being understood that total investment expenditure is equal to total savings. Diagrammat-
ically, we have Figure 18.2.

From the postulated consumption function and Figure 18.2 it is clear that C and Y
are interdependent and that Yt in Eq. (18.2.3) is not expected to be independent of the
disturbance term because when ut shifts (because of a variety of factors subsumed in the
error term), then the consumption function also shifts, which, in turn, affects Yt. Therefore,
once again the classical least-squares method is inapplicable to Eq. (18.2.3). If applied, the
estimators thus obtained will be inconsistent, as we shall show later.

EXAMPLE 18.2
(Continued)
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FIGURE 18.2
Keynesian model
of income
determination.

EXAMPLE 18.3
Wage–Price
Models

Consider the following Phillips-type model of money-wage and price determination:

Ẇt = α0 + α1UNt + α2 Ṗ t + u1t (18.2.5)

Ṗ t = β0 + β1Ẇt + β2 Ṙ t + β3Ṁt + u2t (18.2.6)

where Ẇ = rate of change of money wages
UN = unemployment rate, %

Ṗ = rate of change of prices
Ṙ = rate of change of cost of capital
Ṁ = rate of change of price of imported raw material
t = time

u1, u2 = stochastic disturbances

Since the price variable Ṗ enters into the wage equation and the wage variable Ẇ enters
into the price equation, the two variables are jointly dependent. Therefore, these stochas-
tic explanatory variables are expected to be correlated with the relevant stochastic distur-
bances, once again rendering the classical OLS method inapplicable to estimate the
parameters of the two equations individually.

guj75772_ch18.qxd  28/08/2008  06:21 PM  Page 676



Chapter 18 Simultaneous-Equation Models 677

EXAMPLE 18.4
The IS Model of
Macroeconomics

The celebrated IS, or goods market equilibrium, model of macroeconomics3 in its non-
stochastic form can be expressed as:

Consumption function: Ct = β0 + β1Ydt 0 < β1 < 1 (18.2.7)

Tax function: Tt = α0 + α1Yt 0 < α1 < 1 (18.2.8)

Investment function: It = γ0 + γ1rt (18.2.9)

Definition: Ydt = Yt − Tt (18.2.10)

Government expenditure: Gt = Ḡ (18.2.11)

National income identity: Yt = Ct + It + Gt (18.2.12)

where Y = national income
C = consumption spending
I = planned or desired net investment

Ḡ = given level of government expenditure
T = taxes
Yd = disposable income

r = interest rate

If you substitute Eqs. (18.2.10) and (18.2.8) into Eq. (18.2.7) and substitute the result-
ing equation for C and Eqs. (18.2.9) and (18.2.11) into Eq. (18.2.12), you should obtain
the IS equation:

Yt = π0 + π1rt (18.2.13)

where π0 = β0 − α0β1 + γ0 + Ḡ
1 − β1(1 − α1)

(18.2.14)
π1 = 1

1 − β1(1 − α1)

Equation (18.2.13) is the equation of the IS, or goods market equilibrium, that is, it gives
the combinations of the interest rate and level of income such that the goods market
clears or is in equilibrium. Geometrically, the IS curve is shown in Figure 18.3.

3“The goods market equilibrium schedule, or IS schedule, shows combinations of interest rates and
levels of output such that planned spending equals income.’’ See Rudiger Dornbusch and Stanley
Fischer, Macroeconomics, 3d ed., McGraw-Hill, New York, 1984, p. 102. Note that for simplicity we
have assumed away the foreign trade sector.
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The IS curve.

(Continued)
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678 Part Four Simultaneous-Equation Models and Time Series Econometrics

What would happen if we were to estimate, say, the consumption function (18.2.7) in
isolation? Could we obtain unbiased and/or consistent estimates of β0 and β1? Such a
result is unlikely because consumption depends on disposable income, which depends on
national income Y, but the latter depends on r and Ḡ as well as the other parameters
entering in π0. Therefore, unless we take into account all these influences, a simple
regression of C on Yd is bound to give biased and/or inconsistent estimates of β0 and β1.

EXAMPLE 18.4
(Continued)

EXAMPLE 18.5
The LM Model

The other half of the famous IS–LM paradigm is the LM, or money market equilibrium, re-
lation, which gives the combinations of the interest rate and level of income such that the
money market is cleared, that is, the demand for money is equal to its supply. Alge-
braically, the model, in the nonstochastic form, may be expressed as:

Money demand function: Md
t = a + bYt − crt (18.2.15)

Money supply function: Ms
t = M̄ (18.2.16)

Equilibrium condition: Md
t = Ms

t (18.2.17)

where Y = income, r = interest rate, and M̄ = assumed level of money supply, say,
determined by the Fed.

Equating the money demand and supply functions and simplifying, we obtain the LM
equation:

Yt = λ0 + λ1M̄ + λ2rt (18.2.18)

where
λ0 = −a/b

λ1 = 1/b (18.2.19)
λ2 = c/b

For a given M = M̄, the LM curve representing the relation (18.2.18) is as shown in
Figure 18.4.

The IS and LM curves show, respectively, that a whole array of interest rates is consis-
tent with goods market equilibrium and a whole array of interest rates is compatible with
equilibrium in the money market. Of course, only one interest rate and one level of
income will be consistent simultaneously with the two equilibria. To obtain these, all that
needs to be done is to equate Eqs. (18.2.13) and (18.2.18). In Exercise 18.4 you are asked
to show the level of the interest rate and income that is simultaneously compatible with
the goods and money market equilibrium.
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18.3 The Simultaneous-Equation Bias:
Inconsistency of OLS Estimators

As stated previously, the method of least squares may not be applied to estimate a single
equation embedded in a system of simultaneous equations if one or more of the explana-
tory variables are correlated with the disturbance term in that equation because the estima-
tors thus obtained are inconsistent. To show this, let us revert to the simple Keynesian

EXAMPLE 18.6
Econometric
Models

An extensive use of simultaneous-equation models has been made in the econometric
models built by several econometricians. An early pioneer in this field was Professor
Lawrence Klein of the Wharton School of the University of Pennsylvania. His initial model,
known as Klein’s model I, is as follows:

Consumption function: Ct = β0 + β1 Pt + β2(W + W ′)t + β3 Pt−1 + u1t

Investment function: It = β4 + β5 Pt + β6 Pt−1 + β7K t−1 + u2t

Demand for labor: Wt = β8 + β9(Y + T − W ′)t

+β10(Y + T − W ′)t−1 + β11t + u3t

Identity: Yt + Tt = Ct + It + Gt

(18.2.20)

Identity: Yt = W ′
t + Wt + Pt

Identity: K t = K t−1 + It

where C = consumption expenditure
I = investment expenditure

G = government expenditure
P = profits

W = private wage bill
W ′ = government wage bill

K = capital stock
T = taxes
Y = income after tax
t = time

u1, u2, and u3 = stochastic disturbances4

In the preceding model the variables C, I, W, Y, P, and K are treated as jointly dependent,
or endogenous, variables and the variables Pt−1, K t−1, and Yt−1 are treated as predeter-
mined.5 In all, there are six equations (including the three identities) to study the interde-
pendence of six endogenous variables.

In Chapter 20 we shall see how such econometric models are estimated. For the time
being, note that because of the interdependence among the endogenous variables, in
general they are not independent of the stochastic disturbance terms, which therefore
makes it inappropriate to apply the method of OLS to an individual equation in the sys-
tem. As shown in Section 18.3, the estimators thus obtained are inconsistent; they do not
converge to their true population values even when the sample size is very large.

4L. R. Klein, Economic Fluctuations in the United States, 1921–1941, John Wiley & Sons, New York, 1950.
5The model builder will have to specify which of the variables in a model are endogenous and which
are predetermined. Kt−1 and Yt−1 are predetermined because at time t their values are known. (More
on this in Chapter 19.)
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model of income determination given in Example 18.2. Suppose that we want to estimate
the parameters of the consumption function (18.2.3). Assuming that E(ut ) = 0,
E(u2

t ) = σ 2, E(ut ut+ j ) = 0 (for j �= 0), and cov ( It , ut ) = 0, which are the assumptions of
the classical linear regression model, we first show that Yt and ut in (18.2.3) are correlated
and then prove that β̂1 is an inconsistent estimator of β1.

To prove that Yt and ut are correlated, we proceed as follows. Substitute Eq. (18.2.3) into
Eq. (18.2.4) to obtain

Yt = β0 + β1Yt + ut + It

that is,

Yt = β0

1 − β1
+ 1

1 − β1
It + 1

1 − β1
ut (18.3.1)

Now

E(Yt ) = β0

1 − β1
+ 1

1 − β1
It (18.3.2)

where use is made of the fact that E(ut ) = 0 and that It being exogenous, or predetermined
(because it is fixed in advance), has as its expected value It .

Therefore, subtracting Eq. (18.3.2) from Eq. (18.3.1) results in

Yt − E(Yt ) = ut

1 − β1
(18.3.3)

Moreover,

ut − E(ut ) = ut (Why?) (18.3.4)
whence

cov (Yt , ut ) = E[Yt − E(Yt )][ut − E(ut )]

= E
(
u2

t

)
1 − β1

from Eqs. (18.3.3) and (18.3.4) (18.3.5)

= σ 2

1 − β1

Since σ 2 is positive by assumption (why?), the covariance between Y and u given in
Eq. (18.3.5) is bound to be different from zero.6 As a result, Yt and ut in Eq. (18.2.3) are ex-
pected to be correlated, which violates the assumption of the classical linear regression
model that the disturbances are independent or at least uncorrelated with the explanatory
variables. As noted previously, the OLS estimators in this situation are inconsistent.

To show that the OLS estimator β̂1 is an inconsistent estimator of β1 because of corre-
lation between Yt and ut , we proceed as follows:

β̂1 =
∑

(Ct − C̄)(Yt − Ȳ )∑
(Yt − Ȳ )2

=
∑

ct yt∑
y2

t
(18.3.6)

=
∑

Ct yt∑
y2

t

6It will be greater than zero as long as β1, the MPC, lies between 0 and 1, and it will be negative if β1

is greater than unity. Of course, a value of MPC greater than unity would not make much economic
sense. In reality therefore the covariance between Yt and ut is expected to be positive.
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where the lowercase letters, as usual, indicate deviations from the (sample) mean values.
Substituting for Ct from Eq. (18.2.3), we obtain

β̂1 =
∑

(β0 + β1Yt + ut )yt∑
y2

t
(18.3.7)

= β1 +
∑

yt ut∑
y2

t

where in the last step use is made of the fact that 
∑

yt = 0 and (
∑

Yt yt/
∑

y2
t ) = 1

(why?).
If we take the expectation of Eq. (18.3.7) on both sides, we obtain

E(β̂1) = β1 + E

[∑
yt ut∑
y2

t

]
(18.3.8)

Unfortunately, we cannot evaluate E(
∑

yt ut/
∑

y2
t ) since the expectations operator is a lin-

ear operator. [Note: E( A/B) �= E( A)/E(B).] But intuitively it should be clear that unless
the term (

∑
yt ut/

∑
y2

t ) is zero, β̂1 is a biased estimator of β1. But have we not shown in
Eq. (18.3.5) that the covariance between Y and u is nonzero and therefore would β̂1 not be bi-
ased? The answer is, not quite, since cov (Yt , ut ), a population concept, is not quite

∑
yt ut ,

which is a sample measure, although as the sample size increases indefinitely the latter will
tend toward the former. But if the sample size increases indefinitely, then we can resort to the
concept of consistent estimator and find out what happens to β̂1 as n, the sample size,
increases indefinitely. In short, when we cannot explicitly evaluate the expected value of an
estimator, as in Eq. (18.3.8), we can turn our attention to its behavior in the large sample.

Now an estimator is said to be consistent if its probability limit,7 or plim for short, is
equal to its true (population) value. Therefore, to show that β̂1 of Eq. (18.3.7) is inconsis-
tent, we must show that its plim is not equal to the true β1. Applying the rules of probability
limit to Eq. (18.3.7), we obtain:8

plim (β̂1) = plim (β1) + plim

(∑
yt ut∑
y2

t

)

= plim (β1) + plim

(∑
yt ut

/
n∑

y2
t

/
n

)
(18.3.9)

= β1 + plim
(∑

yt ut

/
n
)

plim
(∑

y2
t

/
n
)

where in the second step we have divided 
∑

yt ut and 
∑

y2
t by the total number of obser-

vations in the sample n so that the quantities in the parentheses are now the sample covari-
ance between Y and u and the sample variance of Y, respectively.

In words, Eq. (18.3.9) states that the probability limit of β̂1 is equal to true β1 plus the ratio
of the plim of the sample covariance between Y and u to the plim of the sample variance of Y.
Now as the sample size n increases indefinitely, one would expect the sample covariance be-
tween Y and u to approximate the true population covariance E[Yt − E(Yt )][ut − E(ut )],
which from Eq. (18.3.5) is equal to [σ 2/(1 − β1)]. Similarly, as n tends to infinity, the sample

7See Appendix A for the definition of probability limit.
8As stated in Appendix A, the plim of a constant (for example, β1) is the same constant and the
plim of (A/B) = plim (A)/plim (B). Note, however, that E(A/B) �= E(A)/E(B). 
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682 Part Four Simultaneous-Equation Models and Time Series Econometrics

variance of Y will approximate its population variance, say σ 2
Y . Therefore, Eq. (18.3.9) may

be written as

plim (β̂1) = β1 + σ 2/(1 − β1)

σ 2
Y

= β1 + 1

1 − β1

(
σ 2

σ 2
Y

) (18.3.10)

Given that 0 < β1 < 1 and that σ 2 and σ 2
Y are both positive, it is obvious from Eq. (18.3.10)

that plim (β̂1) will always be greater than β1; that is, β̂1 will overestimate the true β1.9 In
other words, β̂1 is a biased estimator, and the bias will not disappear no matter how large
the sample size.

18.4 The Simultaneous-Equation Bias: A Numerical Example

To demonstrate some of the points made in the preceding section, let us return to the sim-
ple Keynesian model of income determination given in Example 18.2 and carry out the fol-
lowing Monte Carlo study.10 Assume that the values of investment I are as shown in
column 3 of Table 18.1. Further assume that

E(ut ) = 0

E(ut ut+ j ) = 0 ( j �= 0)

var (ut ) = σ 2 = 0.04

cov (ut , It ) = 0

The ut thus generated are shown in column 4.
For the consumption function (18.2.3) assume that the values of the true parameters are

known and are β0 = 2 and β1 = 0.8.

From the assumed values of β0 and β1 and the generated values of ut we can generate
the values of income Yt from Eq. (18.3.1), which are shown in column 1 of Table 18.1.
Once Yt are known, and knowing β0, β1, and ut , one can easily generate the values of con-
sumption Ct from Eq. (18.2.3). The C’s thus generated are given in column 2.

Since the true β0 and β1 are known, and since our sample errors are exactly the same as
the “true’’ errors (because of the way we designed the Monte Carlo study), if we use the
data of Table 18.1 to regress Ct on Yt we should obtain β0 = 2 and β1 = 0.8, if OLS were
unbiased. But from Eq. (18.3.7) we know that this will not be the case if the regressor Yt

and the disturbance ut are correlated. Now it is not too difficult to verify from our data that
the (sample) covariance between Yt and ut is 

∑
yt ut = 3.8 and that 

∑
y2

t = 184. Then, as
Eq. (18.3.7) shows, we should have

β̂1 = β1 +
∑

yt ut∑
y2

t

= 0.8 + 3.8

184

(18.4.1)

= 0.82065

That is, β̂1 is upward-biased by 0.02065.

9In general, however, the direction of the bias will depend on the structure of the particular model
and the true values of the regression coefficients.
10This is borrowed from Kenneth J. White, Nancy G. Horsman, and Justin B. Wyatt, SHAZAM: Computer
Handbook for Econometrics for Use with Basic Econometrics, McGraw-Hill, New York, 1985, pp. 131–134.
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Now let us regress Ct on Yt , using the data given in Table 18.1. The regression results
are

Ĉ t = 1.4940 + 0.82065Yt

se = (0.35413) (0.01434) (18.4.2)

t = (4.2188) (57.209) R2 = 0.9945

As expected, the estimated β1 is precisely the one predicted by Eq. (18.4.1). In passing,
note that the estimated β0 too is biased.

In general, the amount of the bias in β̂1 depends on β1, σ 2 and var (Y) and, in particular,
on the degree of covariance between Y and u.11 As Kenneth White et al. note, “This is what
simultaneous equation bias is all about. In contrast to single equation models, we can no
longer assume that variables on the right hand side of the equation are uncorrelated with the
error term.’’12 Bear in mind that this bias remains even in large samples.

In view of the potentially serious consequences of applying OLS in simultaneous-
equation models, is there a test of simultaneity that can tell us whether in a given instance
we have the simultaneity problem? One version of the Hausman specification test can be
used for this purpose, which we discuss in Chapter 19.

TABLE 18.1 Yt Ct It ut

(1) (2) (3) (4)

18.15697 16.15697 2.0 −0.3686055
19.59980 17.59980 2.0 −0.8004084E-01
21.93468 19.73468 2.2 0.1869357
21.55145 19.35145 2.2 0.1102906
21.88427 19.48427 2.4 −0.2314535E-01
22.42648 20.02648 2.4 0.8529544E-01
25.40940 22.80940 2.6 0.4818807
22.69523 20.09523 2.6 −0.6095481E-01
24.36465 21.56465 2.8 0.7292983E-01
24.39334 21.59334 2.8 0.7866819E-01
24.09215 21.09215 3.0 −0.1815703
24.87450 21.87450 3.0 −0.2509900E-01
25.31580 22.11580 3.2 −0.1368398
26.30465 23.10465 3.2 0.6092946E-01
25.78235 22.38235 3.4 −0.2435298
26.08018 22.68018 3.4 −0.1839638
27.24440 23.64440 3.6 −0.1511200
28.00963 24.40963 3.6 0.1926739E-02
30.89301 27.09301 3.8 0.3786015
28.98706 25.18706 3.8 −0.2588852E-02

Source: Kenneth J. White, Nancy G. Horsman, and Justin B. Wyatt, SHAZAM: Computer Handbook for Econometrics for Use
with Damodar Gujarati: Basic Econometrics, September 1985, p. 132.

11See Eq. (18.3.5).
12Op. cit., pp. 133–134.
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1. In contrast to single-equation models, in simultaneous-equation models more than one
dependent, or endogenous, variable is involved, necessitating as many equations as the
number of endogenous variables.

2. A unique feature of simultaneous-equation models is that the endogenous variable (i.e.,
regressand) in one equation may appear as an explanatory variable (i.e., regressor) in an-
other equation of the system.

3. As a consequence, such an endogenous explanatory variable becomes stochastic and
is usually correlated with the disturbance term of the equation in which it appears as an
explanatory variable.

4. In this situation the classical OLS method may not be applied because the estimators
thus obtained are not consistent, that is, they do not converge to their true population val-
ues no matter how large the sample size.

5. The Monte Carlo example presented in the text shows the nature of the bias involved in
applying OLS to estimate the parameters of a regression equation in which the regres-
sor is correlated with the disturbance term, which is typically the case in simultaneous-
equation models.

6. Since simultaneous-equation models are used frequently, especially in econometric
models, alternative estimating techniques have been developed by various authors.
These are discussed in Chapter 20, after the topic of the identification problem is con-
sidered in Chapter 19, a topic logically prior to estimation.

Summary and
Conclusions

EXERCISES Questions
18.1. Develop a simultaneous-equation model for the supply of and demand for dentists

in the United States. Specify the endogenous and exogenous variables in the model.

18.2. Develop a simple model of the demand for and supply of money in the United
States and compare your model with those developed by K. Brunner and A. H.
Meltzer* and R. Tiegen.†

18.3. a. For the demand-and-supply model of Example 18.1, obtain the expression for
the probability limit of α̂1.

b. Under what conditions will this probability limit be equal to the true α1?

18.4. For the IS-LM model discussed in the text, find the level of interest rate and income
that is simultaneously compatible with the goods and money market equilibrium.

18.5. To study the relationship between inflation and yield on common stock, Bruno
Oudet‡ used the following model:

Rbt = α1 + α2 Rst + α3 Rbt−1 + α4Lt + α5Yt + α6NISt + α7 It + u1t

Rst = β1 + β2 Rbt + β3 Rbt−1 + β4Lt + β5Yt + β6NISt + β7 Et + u2t

*“Some Further Evidence on Supply and Demand Functions for Money,’’ Journal of Finance, vol. 19,
May 1964, pp. 240–283.
†“Demand and Supply Functions for Money in the United States,’’ Econometrica, vol. 32, no. 4, 
October 1964, pp. 476–509.
‡Bruno A. Oudet, “The Variation of the Return on Stocks in Periods of Inflation,’’ Journal of Financial
and Quantitative Analysis, vol. 8, no. 2, March 1973, pp. 247–258.
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where L = real per capita monetary base
Y = real per capita income
I = the expected rate of inflation

NIS = a new issue variable
E = expected end-of-period stock returns, proxied by lagged stock price ratios

Rbt = bond yield
Rst = common stock returns

a. Offer a theoretical justification for this model and see if your reasoning agrees
with that of Oudet.

b. Which are the endogenous variables in the model? Which are the exogenous 
variables?

c. How would you treat the lagged Rbt—endogenous or exogenous?

18.6. In their article, “A Model of the Distribution of Branded Personal Products in
Jamaica,’’* John U. Farley and Harold J. Levitt developed the following model (the
personal products considered were shaving cream, skin cream, sanitary napkins,
and toothpaste):

Y1i = α1 + β1Y2i + β2Y3i + β3Y4i + u1i

Y2i = α2 + β4Y1i + β5Y5i + γ1 X1i + γ2 X2i + u2i

Y3i = α3 + β6Y2i + γ3 X3i + u3i

Y4i = α4 + β7Y2i + γ4 X4i + u4i

Y5i = α5 + β8Y2i + β9Y3i + β10Y4i + u5i

where Y1 = percent of stores stocking the product
Y2 = sales in units per month
Y3 = index of direct contact with importer and manufacturer for the product
Y4 = index of wholesale activity in the area
Y5 = index of depth of brand stocking for the product (i.e., average number of

brands of the product stocked by stores carrying the product)
X1 = target population for the product
X2 = income per capita in the parish where the area is
X3 = distance from the population center of gravity to Kingston
X4 = distance from population center to nearest wholesale town

a. Can you identify the endogenous and exogenous variables in the preceding
model?

b. Can one or more equations in the model be estimated by the method of least
squares? Why or why not?

18.7. To study the relationship between advertising expenditure and sales of cigarettes,
Frank Bass used the following model:†

Y1t = α1 + β1Y3t + β2Y4t + γ1 X1t + γ2 X2t + u1t

Y2t = α2 + β3Y3t + β4Y4t + γ3 X1t + γ4 X2t + u2t

Y3t = α3 + β5Y1t + β6Y2t + u3t

Y4t = α4 + β7Y1t + β8Y2t + u4t

*Journal of Marketing Research, November 1968, pp. 362–368.
†“A Simultaneous Equation Regression Study of Advertising and Sales of Cigarettes,’’ Journal of Mar-
keting Research, vol. 6, August 1969, pp. 291–300.
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686 Part Four Simultaneous-Equation Models and Time Series Econometrics

where Y1 = logarithm of sales of filter cigarettes (number of cigarettes) divided by
population over age 20

Y2 = logarithm of sales of nonfilter cigarettes (number of cigarettes) divided by
population over age 20

Y3 = logarithm of advertising dollars for filter cigarettes divided by population
over age 20 divided by advertising price index

Y4 = logarithm of advertising dollars for nonfilter cigarettes divided by popula-
tion over age 20 divided by advertising price index

X1 = logarithm of disposable personal income divided by population over age 20
divided by consumer price index

X2 = logarithm of price per package of nonfilter cigarettes divided by consumer
price index

a. In the preceding model the Y ’s are endogenous and the X ’s are exogenous. Why
does the author assume X2 to be exogenous?

b. If X2 is treated as an endogenous variable, how would you modify the preceding
model?

18.8. G. Menges developed the following econometric model for the West German
economy:*

Yt = β0 + β1Yt−1 + β2 It + u1t

It = β3 + β4Yt + β5 Qt + u2t

Ct = β6 + β7Yt + β8Ct−1 + β9 Pt + u3t

Qt = β10 + β11 Qt−1 + β12 Rt + u4t

where Y = national income
I = net capital formation

C = personal consumption
Q = profits
P = cost of living index
R = industrial productivity
t = time
u = stochastic disturbances

a. Which of the variables would you regard as endogenous and which as exogenous?

b. Is there any equation in the system that can be estimated by the single-equation
least-squares method?

c. What is the reason behind including the variable P in the consumption function?

18.9. L. E. Gallaway and P. E. Smith developed a simple model for the United States
economy, which is as follows:†

Yt = Ct + It + Gt

Ct = β1 + β2YDt−1 + β3 Mt + u1t

It = β4 + β5(Yt−1 − Yt−2) + β6 Zt−1 + u2t

Gt = β7 + β8Gt−1 + u3t

*G. Menges, “Ein Ökonometriches Modell der Bundesrepublik Deutschland (Vier Strukturgleichungen),’’
I.F.O. Studien, vol. 5, 1959, pp. 1–22.
†“A Quarterly Econometric Model of the United States,’’ Journal of American Statistical Association,
vol. 56, 1961, pp. 379–383.
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where Y = gross national product
C = personal consumption expenditure
I = gross private domestic investment

G = government expenditure plus net foreign investment
YD = disposable, or after-tax, income

M = money supply at the beginning of the quarter
Z = property income before taxes
t = time

u1, u2, and u3 = stochastic disturbances

All variables are measured in the first-difference form.

From the quarterly data from 1948–1957, the authors applied the least-squares
method to each equation individually and obtained the following results:

Ĉt = 0.09 + 0.43YDt−1 + 0.23Mt R2 = 0.23

Ît = 0.08 + 0.43(Yt−1 − Yt−2) + 0.48Zt R2 = 0.40

Ĝt = 0.13 + 0.67Gt−1 R2 = 0.42

a. How would you justify the use of the single-equation least-squares method in
this case?

b. Why are the R2 values rather low?

Empirical Exercises
18.10. Table 18.2 gives you data on Y (gross domestic product), I (gross private domestic

investment), and C (personal consumption expenditure) for the United States for the
period 1970–2006. All data are in 1996 billions of dollars. Assume that C is linearly
related to Y as in the simple Keynesian model of income determination of Exam-
ple 18.2. Obtain OLS estimates of the parameters of the consumption function. Save the
results for another look at the same data using the methods developed in Chapter 20.

18.11. Using the data given in Exercise 18.10, regress gross domestic investment I on
GDP and save the results for further examination in a later chapter.

18.12. Consider the macroeconomics identity

C + I = Y ( = GDP)

As before, assume that

Ct = β0 + β1Yt + ut

and, following the accelerator model of macroeconomics, let

It = α0 + α1(Yt − Yt−1) + vt

where u and v are error terms. From the data given in Exercise 18.10, estimate the
accelerator model and save the results for further study.

18.13. Supply and demand for gas. Table 18.3, found on the textbook website, gives data
on some of the variables that determine demand for and supply of gasoline in the
U.S. from January 1978 to August 2002.* The variables are: pricegas (cents per

*These data are taken from the website of Stephen J. Schmidt, Econometrics, McGraw-Hill, New York,
2005. See www.mhhe.com/economics.
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688 Part Four Simultaneous-Equation Models and Time Series Econometrics

gallon); quantgas (thousands of barrels per day, unleaded); persincome (personal
income, billions of dollars); and car sales (millions of cars per year).

a. Develop a suitable supply-and-demand model for gasoline consumption.

b. Which variables in the model in (a) are endogenous and which are exogenous?

c. If you estimate the demand-and-supply functions that you have developed by
OLS, will your results be reliable? Why or why not?

d. Save the OLS estimates of your demand-and-supply functions for another look
after we discuss Chapter 20.

18.14. Table 18.4, found on the textbook website, gives macroeconomic data on several
variables for the U.S. economy for the quarterly periods 1951–I to 2000–IV.* The
variables are as follows: Year � date; Qtr � quarter; Realgdp � real GDP (billions
of dollars); Realcons � real consumption expenditure; Realinvs � real investment
by private sector; Realgovt � real government expenditure; Realdpi � real dispos-
able personal income; CPI_U � consumer price index; M1 � nominal money
stock; Tbilrate � quarterly average of month-end 90-day T-bill rate; Pop �
population, millions, interpolate of year-end figures using constant growth rate per
quarter; Infl � rate of inflation (first observation is missing); and Realint � expost
real interest rate � Tbilrate–Infl (first observation missing).

Using these data, develop a simple macroeconomic model of the U.S. economy.
You will be asked to estimate this model in Chapter 20.

TABLE 18.2 Personal Consumption Expenditure, Gross Private Domestic Investment, and GDP, United States,
1970–2006 (billions of 1996 dollars)

Observation C I Y Observation C I Y

1970 2,451.9 427.1 3,771.9 1989 4,675.0 926.2 6,981.4
1971 2,545.5 475.7 3,898.6 1990 4,770.3 895.1 7,112.5
1972 2,701.3 532.1 4,105.0 1991 4,778.4 822.2 7,100.5
1973 2,833.8 594.4 4,341.5 1992 4,934.8 889.0 7,336.6
1974 2,812.3 550.6 4,319.6 1993 5,099.8 968.3 7,532.7
1975 2,876.9 453.1 4,311.2 1994 5,290.7 1,099.6 7,835.5
1976 3,035.5 544.7 4,540.9 1995 5,433.5 1,134.0 8,031.7
1977 3,164.1 627.0 4,750.5 1996 5,619.4 1,234.3 8,328.9
1978 3,303.1 702.6 5,015.0 1997 5,831.8 1,387.7 8,703.5
1979 3,383.4 725.0 5,173.4 1998 6,125.8 1,524.1 9,066.9
1980 3,374.1 645.3 5,161.7 1999 6,438.6 1,642.6 9,470.3
1981 3,422.2 704.9 5,291.7 2000 6,739.4 1,735.5 9,817.0
1982 3,470.3 606.0 5,189.3 2001 6,910.4 1,598.4 9,890.7
1983 3,668.6 662.5 5,423.8 2002 7,099.3 1,557.1 10,048.8
1984 3,863.3 857.7 5,813.6 2003 7,295.3 1,613.1 10,301.0
1985 4,064.0 849.7 6,053.7 2004 7,561.4 1,770.2 10,675.8
1986 4,228.9 843.9 6,263.6 2005 7,803.6 1,869.3 11,003.4
1987 4,369.8 870.0 6,475.1 2006 8,044.1 1,919.5 11,319.4
1988 4,546.9 890.5 6,742.7

Notes: C � personal consumption expenditure.
I � gross private domestic investment.
Y � gross domestic product.

Source: Economic Report of the President, 2008, Table B-2.

*These data are originally from the Department of Commerce, Bureau of Economic Analysis, and from
www.economagic.com, and are reproduced from William H. Greene, Econometric Analysis, 6th ed.,
2008, Table F5.1, p.1083.
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689

In this chapter we consider the nature and significance of the identification problem. The
crux of the identification problem is as follows: Recall the demand-and-supply model
introduced in Section 18.2. Suppose that we have time series data on Q and P only and no
additional information (such as income of the consumer, price prevailing in the previous
period, and weather condition). The identification problem then consists in seeking an
answer to this question: Given only the data on P and Q, how do we know whether we are
estimating the demand function or the supply function? Alternatively, if we think we are
fitting a demand function, how do we guarantee that it is, in fact, the demand function that
we are estimating and not something else?

A moment’s reflection will reveal that an answer to the preceding question is necessary
before one proceeds to estimate the parameters of our demand function. In this chapter we
shall show how the identification problem is resolved. We first introduce a few notations
and definitions and then illustrate the identification problem with several examples. This is
followed by the rules that may be used to find out whether an equation in a simultaneous-
equation model is identified, that is, whether it is the relationship that we are actually esti-
mating, be it the demand or supply function or something else.

19.1 Notations and Definitions

To facilitate our discussion, we introduce the following notations and definitions.
The general M equations model in M endogenous, or jointly dependent, variables may

be written as Eq. (19.1.1):

Y1t = β12Y2t + β13Y3t + · · · + β1M YMt

+ γ11 X1t + γ12 X2t + · · · + γ1K X K t + u1t

Y2t = β21Y1t + β23Y3t + · · · + β2M YMt

+ γ21 X1t + γ22 X2t + · · · + γ2K X K t + u2t

Y3t = β31Y1t + β32Y2t + · · · + β3M YMt

+ γ31 X1t + γ32 X2t + · · · + γ3K X K t + u3t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

YMT = βM1Y1t + βM2Y2t + · · · + βM, M−1YM−1,t

+ γM1 X1t + γM2 X2t + · · · + γM K X K t + uMt

(19.1.1)

Chapter 19
The Identification
Problem
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690 Part Four Simultaneous-Equation Models and Time Series Econometrics

where Y1, Y2, . . . , YM = M endogenous, or jointly dependent, variables
X1, X2, . . . , X K = K predetermined variables (one of these X variables may take a

value of unity to allow for the intercept term in each equation)
u1, u2, . . . , uM = M stochastic disturbances

t = 1, 2, . . . , T = total number of observations
β’s = coefficients of the endogenous variables
γ ’s = coefficients of the predetermined variables

In passing, note that not each and every variable need appear in each equation. As a matter
of fact, we see in Section 19.2 that this must not be the case if an equation is to be identified.

As Eq. (19.1.1) shows, the variables entering a simultaneous-equation model are of two
types: endogenous, that is, those (whose values are) determined within the model; and
predetermined, that is, those (whose values are) determined outside the model. The endoge-
nous variables are regarded as stochastic, whereas the predetermined variables are treated
as nonstochastic.

The predetermined variables are divided into two categories: exogenous, current as well
as lagged, and lagged endogenous. Thus, X1t is a current (present-time) exogenous variable,
whereas X1(t−1) is a lagged exogenous variable, with a lag of one time period. Y(t−1) is a
lagged endogenous variable with a lag of one time period, but since the value of Y1(t−1) is
known at the current time t, it is regarded as nonstochastic, hence, a predetermined variable.1

In short, current exogenous, lagged exogenous, and lagged endogenous variables are deemed
predetermined; their values are not determined by the model in the current time period.

It is up to the model builder to specify which variables are endogenous and which are
predetermined. Although (noneconomic) variables, such as temperature and rainfall, are
clearly exogenous or predetermined, the model builder must exercise great care in classify-
ing economic variables as endogenous or predetermined: He or she must defend the classi-
fication on a priori or theoretical grounds. However, later in the chapter we provide a
statistical test of exogeneity.

The equations appearing in (19.1.1) are known as the structural, or behavioral, equa-
tions because they may portray the structure (of an economic model) of an economy or the
behavior of an economic agent (e.g., consumer or producer). The β’s and γ’s are known as
the structural parameters or coefficients.

From the structural equations one can solve for the M endogenous variables and derive
the reduced-form equations and the associated reduced-form coefficients. A reduced-
form equation is one that expresses an endogenous variable solely in terms of the
predetermined variables and the stochastic disturbances. To illustrate, consider the
Keynesian model of income determination encountered in Chapter 18:

Consumption function: Ct = β0 + β1Yt + ut 0 < β1 < 1 (18.2.3)
Income identity: Yt = Ct + It (18.2.4)

In this model C (consumption) andY (income) are the endogenous variables and I (investment
expenditure) is treated as an exogenous variable. Both these equations are structural equations,
Eq. (18.2.4) being an identity. As usual, the MPC β1 is assumed to lie between 0 and 1.

If Eq. (18.2.3) is substituted into Eq. (18.2.4), we obtain, after simple algebraic
manipulation,

Yt = �0 + �1 It + wt (19.1.2)

1It is assumed implicitly here that the stochastic disturbances, the u’s, are serially uncorrelated. If this
is not the case, Yt−1 will be correlated with the current period disturbance term ut . Hence, we cannot
treat it as predetermined.
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where

Equation (19.1.2) is a reduced-form equation; it expresses the endogenous variable Y
solely as a function of the exogenous (or predetermined) variable I and the stochastic distur-
bance term u. �0 and �1 are the associated reduced-form coefficients. Notice that these
reduced-form coefficients are nonlinear combinations of the structural coefficient(s).

Substituting the value of Y from Eq. (19.1.2) into C of Eq. (18.2.3), we obtain another
reduced-form equation:

Ct = �2 + �3 It + wt (19.1.4)

where

�2 = β0

1 − β1
�3 = β1

1 − β1
(19.1.5)

wt = ut

1 − β1

The reduced-form coefficients, such as �1 and �3, are also known as impact, or short-
run, multipliers, because they measure the immediate impact on the endogenous variable
of a unit change in the value of the exogenous variable.2 If in the preceding Keynesian
model the investment expenditure is increased by, say, $1 and if the MPC is assumed to be
0.8, then from Eq. (19.1.3) we obtain �1 = 5. This result means that increasing the invest-
ment by $1 will immediately (i.e., in the current time period) lead to an increase in income
of $5, that is, a fivefold increase. Similarly, under the assumed conditions, Eq. (19.1.5)
shows that �3 = 4, meaning that $1 increase in investment expenditure will lead immedi-
ately to $4 increase in consumption expenditure.

In the context of econometric models, equations such as Eq. (18.2.4) or Qd
t = Qs

t
(quantity demanded equal to quantity supplied) are known as the equilibrium conditions.
Identity (18.2.4) states that aggregate income Y must be equal to aggregate consumption
(i.e., consumption expenditure plus investment expenditure). When equilibrium is
achieved, the endogenous variables assume their equilibrium values.3

Notice an interesting feature of the reduced-form equations. Since only the predeter-
mined variables and stochastic disturbances appear on the right sides of these equations,
and since the predetermined variables are assumed to be uncorrelated with the disturbance
terms, the OLS method can be applied to estimate the coefficients of the reduced-form
equations (the �’s). From the estimated reduced-form coefficients one may estimate the
structural coefficients (the β’s), as shown later. This procedure is known as indirect least
squares (ILS), and the estimated structural coefficients are called ILS estimates.

(19.1.3)

�0 = β0

1 − β1

�1 = 1

1 − β1

wt = ut

1 − β1

2In econometric models the exogenous variables play a crucial role. Very often, such variables are
under the direct control of the government. Examples are the rate of personal and corporate taxes,
subsidies, unemployment compensation, etc.
3For details, see Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, pp. 723–731.
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We shall study the ILS method in greater detail in Chapter 20. In the meantime, note that
since the reduced-form coefficients can be estimated by the OLS method, and since these co-
efficients are combinations of the structural coefficients, the possibility exists that the
structural coefficients can be “retrieved” from the reduced-form coefficients, and it is in
the estimation of the structural parameters that we may be ultimately interested. How does
one retrieve the structural coefficients from the reduced-form coefficients? The answer is
given in Section 19.2, an answer that brings out the crux of the identification problem.

19.2 The Identification Problem

By the identification problem we mean whether numerical estimates of the parameters of
a structural equation can be obtained from the estimated reduced-form coefficients. If this
can be done, we say that the particular equation is identified. If this cannot be done, then we
say that the equation under consideration is unidentified, or underidentified.

An identified equation may be either exactly (or fully or just) identified or overidentified.
It is said to be exactly identified if unique numerical values of the structural parameters can
be obtained. It is said to be overidentified if more than one numerical value can be obtained
for some of the parameters of the structural equations. The circumstances under which each
of these cases occurs will be shown in the following discussion.

The identification problem arises because different sets of structural coefficients may be
compatible with the same set of data. To put the matter differently, a given reduced-form
equation may be compatible with different structural equations or different hypotheses
(models), and it may be difficult to tell which particular hypothesis (model) we are investi-
gating. In the remainder of this section we consider several examples to show the nature of
the identification problem.

Underidentification
Consider once again the demand-and-supply model (18.2.1) and (18.2.2), together with the
market-clearing, or equilibrium, condition that demand is equal to supply. By the equilib-
rium condition, we obtain

α0 + α1 Pt + u1t = β0 + β1 Pt + u2t (19.2.1)

Solving Eq. (19.2.1), we obtain the equilibrium price

Pt = �0 + vt (19.2.2)

where

�0 = β0 − α0

α1 − β1
(19.2.3)

vt = u2t − u1t

α1 − β1
(19.2.4)

Substituting Pt from Eq. (19.2.2) into Eq. (18.2.1) or (18.2.2), we obtain the following
equilibrium quantity:

Qt = �1 + wt (19.2.5)

where

�1 = α1β0 − α0β1

α1 − β1
(19.2.6)

wt = α1u2t − β1u1t

α1 − β1
(19.2.7)
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Incidentally, note that the error terms vt and wt are linear combinations of the original error
terms u1 and u2.

Equations (19.2.2) and (19.2.5) are reduced-form equations. Now our demand-and-
supply model contains four structural coefficients α0, α1, β0, and β1, but there is no unique
way of estimating them. Why? The answer lies in the two reduced-form coefficients given in
Eqs. (19.2.3) and (19.2.6). These reduced-form coefficients contain all four structural para-
meters, but there is no way in which the four structural unknowns can be estimated from only
two reduced-form coefficients. Recall from high school algebra that to estimate four un-
knowns we must have four (independent) equations, and, in general, to estimate k unknowns
we must have k (independent) equations. Incidentally, if we run the reduced-form regression
(19.2.2) and (19.2.5), we will see that there are no explanatory variables, only the constants,
and these constants will simply give the mean values of P and Q (why?).

What all this means is that, given time series data on P (price) and Q (quantity) and no
other information, there is no way the researcher can guarantee whether he or she is esti-
mating the demand function or the supply function. That is, a given Pt and Qt represent
simply the point of intersection of the appropriate demand-and-supply curves because of
the equilibrium condition that demand is equal to supply. To see this clearly, consider the
scattergram shown in Figure 19.1.

Figure 19.1a gives a few scatterpoints relating Q to P. Each scatterpoint represents the
intersection of a demand and a supply curve, as shown in Figure 19.1b. Now consider a sin-
gle point, such as that shown in Figure 19.1c. There is no way we can be sure which demand-
and-supply curve of a whole family of curves shown in that panel generated that point.
Clearly, some additional information about the nature of the demand-and-supply curves is
needed. For example, if the demand curve shifts over time because of change in income,
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tastes, etc., but the supply curve remains relatively stable, as in Figure 19.1d, the scatter-
points trace out a supply curve. In this situation, we say that the supply curve is identified.
By the same token, if the supply curve shifts over time because of changes in weather con-
ditions (in the case of agricultural commodities) or other extraneous factors but the demand
curve remains relatively stable, as in Figure 19.1e, the scatterpoints trace out a demand
curve. In this case, we say that the demand curve is identified.

There is an alternative and perhaps more illuminating way of looking at the identifica-
tion problem. Suppose we multiply Eq. (18.2.1) by λ (0 ≤ λ ≤ 1) and Eq. (18.2.2) by 1 − λ

to obtain the following equations (note: we drop the superscripts on Q):

λQt = λα0 + λα1 Pt + λu1t (19.2.8)

(1 − λ)Qt = (1 − λ)β0 + (1 − λ)β1 Pt + (1 − λ)u2t (19.2.9)

Adding these two equations gives the following linear combination of the original demand-
and-supply equations:

Qt = γ0 + γ1 Pt + wt (19.2.10)

where

γ0 = λα0 + (1 − λ)β0

γ1 = λα1 + (1 − λ)β1 (19.2.11)

wt = λu1t + (1 − λ)u2t

The “bogus,” or “mongrel,” equation (19.2.10) is observationally indistinguishable
from either Eq. (18.2.1) or Eq. (18.2.2) because they involve the regression of Q and P.
Therefore, if we have time series data on P and Q only, any of Eqs. (18.2.1), (18.2.2), or
(19.2.10) may be compatible with the same data. In other words, the same data may be
compatible with the “hypothesis” Eqs. (18.2.1), (18.2.2), or (19.2.10), and there is no way
we can tell which one of these hypotheses we are testing.

For an equation to be identified, that is, for its parameters to be estimated, it must be shown
that the given set of data will not produce a structural equation that looks similar in appearance
to the one in which we are interested. If we set out to estimate the demand function, we must
show that the given data are not consistent with the supply function or some mongrel equation.

Just, or Exact, Identification
The reason we could not identify the preceding demand function or the supply function was
that the same variables P and Q are present in both functions and there is no additional in-
formation, such as that indicated in Figure 19.1d or e. But suppose we consider the follow-
ing demand-and-supply model:

Demand function: Qt = α0 + α1 Pt + α2 It + u1t α1 < 0, α2 > 0 (19.2.12)

Supply function: Qt = β0 + β1 Pt + u2t β1 > 0 (19.2.13)

where I = income of the consumer, an exogenous variable, and all other variables are as
defined previously.

Notice that the only difference between the preceding model and our original demand-
and-supply model is that there is an additional variable in the demand function, namely, in-
come. From economic theory of demand we know that income is usually an important
determinant of demand for most goods and services. Therefore, its inclusion in the demand
function will give us some additional information about consumer behavior. For most com-
modities income is expected to have a positive effect on consumption (α2 > 0).
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Using the market-clearing mechanism, quantity demanded = quantity supplied, we have

α0 + α1 Pt + α2 It + u1t = β0 + β1 Pt + u2t (19.2.14)

Solving Eq. (19.2.14) provides the following equilibrium value of Pt :

Pt = �0 + �1 It + vt (19.2.15)

where the reduced-form coefficients are

�0 = β0 − α0

α1 − β1

�1 = − α2

α1 − β1

(19.2.16)

and

vt = u2t − u1t

α1 − β1

Substituting the equilibrium value of Pt into the preceding demand or supply function, we
obtain the following equilibrium quantity:

Qt = �2 + �3 It + wt (19.2.17)

where

�2 = α1β0 − α0β1

α1 − β1

�3 = − α2β1

α1 − β1

(19.2.18)

and

wt = α1u2t − β1u1t

α1 − β1

Since Eqs. (19.2.15) and (19.2.17) are both reduced-form equations, the ordinary least
squares (OLS) method can be applied to estimate their parameters. Now the demand-and-
supply model (19.2.12) and (19.2.13) contains five structural coefficients—α0, α1, α2, β0

and β1. But there are only four equations to estimate them, namely, the four reduced-form
coefficients �0, �1, �2, and �3 given in Eqs. (19.2.16) and (19.2.18). Hence, unique so-
lution of all the structural coefficients is not possible. But it can be readily shown that the
parameters of the supply function can be identified (estimated) because

But there is no unique way of estimating the parameters of the demand function; therefore,
it remains underidentified. Incidentally, note that the structural coefficient β1 is a nonlinear
function of the reduced-form coefficients, which poses some problems when it comes to es-
timating the standard error of the estimated β1, as we shall see in Chapter 20.

To verify that the demand function (19.2.12) cannot be identified (estimated), let us mul-
tiply it by λ (0 ≤ λ ≤ 1) and (19.2.13) by 1 − λ and add them up to obtain the following
“mongrel” equation:

Qt = γ0 + γ1 Pt + γ2 It + wt (19.2.20)

(19.2.19)

β0 = �2 − β1�0

β1 = �3

�1
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where

γ0 = λα0 + (1 − λ)β0

γ1 = λα1 + (1 − λ)β1 (19.2.21)

γ2 = λα2

and

wt = λu1t + (1 − λ)u2t

Equation (19.2.20) is observationally indistinguishable from the demand function (19.2.12)
although it is distinguishable from the supply function (19.2.13), which does not contain the
variable I as an explanatory variable. Hence, the demand function remains unidentified.

Notice an interesting fact: It is the presence of an additional variable in the demand
function that enables us to identify the supply function! Why? The inclusion of the
income variable in the demand equation provides us some additional information about the
variability of the function, as indicated in Figure 19.1d. The figure shows how the inter-
section of the stable supply curve with the shifting demand curve (on account of changes in
income) enables us to trace (identify) the supply curve. As will be shown shortly, very often
the identifiability of an equation depends on whether it excludes one or more variables that
are included in other equations in the model.

But suppose we consider the following demand-and-supply model:

Demand function: Qt = α0 + α1 Pt + α2 It + u1t α1 < 0, α2 > 0

(19.2.12)

Supply function: Qt = β0 + β1 Pt + β2 Pt−1 + u2t β1 > 0, β2 > 0

(19.2.22)

where the demand function remains as before but the supply function includes an addi-
tional explanatory variable, price lagged one period. The supply function postulates that the
quantity of a commodity supplied depends on its current and previous period’s price, a
model often used to explain the supply of many agricultural commodities. Note that Pt−1 is
a predetermined variable because its value is known at time t.

By the market-clearing mechanism we have

α0 + α1 Pt + α2 It + u1t = β0 + β1 Pt + β2 Pt−1 + u2t (19.2.23)

Solving this equation, we obtain the following equilibrium price:

Pt = �0 + �1 It + �2 Pt−1 + vt (19.2.24)

where

(19.2.25)

�0 = β0 − α0

α1 − β1

�1 = − α2

α1 − β1

�2 = β2

α1 − β1

vt = u2t − u1t

α1 − β1
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Substituting the equilibrium price into the demand or supply equation, we obtain the
corresponding equilibrium quantity:

Qt = �3 + �4 It + �5 Pt−1 + wt (19.2.26)

where the reduced-form coefficients are

and

wt = α1u2t − β1u1t

α1 − β1

The demand-and-supply model given in Eqs. (19.2.12) and (19.2.22) contains six structural
coefficients—α0, α1, α2, β0, β1, and β2—and there are six reduced-form coefficients—
�0, �1, �2, �3, �4, and �5—to estimate them. Thus, we have six equations in six un-
knowns, and normally we should be able to obtain unique estimates.Therefore, the parameters
of both the demand-and-supply equations can be identified, and the system as a whole can be
identified. (In Exercise 19.2 the reader is asked to express the six structural coefficients in
terms of the six reduced-form coefficients given previously to show that unique estimation of
the model is possible.)

To check that the preceding demand-and-supply functions are identified, we can also
resort to the device of multiplying the demand equation (19.2.12) by λ (0 ≤ λ ≤ 1) and the
supply equation (19.2.22) by 1 − λ and add them to obtain a mongrel equation. This mon-
grel equation will contain both the predetermined variables It and Pt−1; hence, it will be
observationally different from the demand as well as the supply equation because the former
does not contain Pt−1 and the latter does not contain It .

Overidentification
For certain goods and services, income as well as wealth of the consumer is an important
determinant of demand. Therefore, let us modify the demand function (19.2.12) as follows,
keeping the supply function as before:

Demand function: Qt = α0 + α1 Pt + α2 It + α3 Rt + u1t (19.2.28)

Supply function: Qt = β0 + β1 Pt + β2 Pt−1 + u2t (19.2.22)

where in addition to the variables already defined, R represents wealth; for most goods and
services, wealth, like income, is expected to have a positive effect on consumption.

Equating demand to supply, we obtain the following equilibrium price and quantity:

Pt = �0 + �1 It + �2 Rt + �3 Pt−1 + vt (19.2.29)

Qt = �4 + �5 It + �6 Rt + �7 Pt−1 + wt (19.2.30)

(19.2.27)

�3 = α1β0 − α0β1

α1 − β1

�4 = − α2β1

α1 − β1

�5 = α1β2

α1 − β1
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where

�0 = β0 − α0

α1 − β1
�1 = − α2

α1 − β1

�2 = − α3

α1 − β1
�3 = β2

α1 − β1

�4 = α1β0 − α0β1

α1 − β1
�5 = − α2β1

α1 − β1
(19.2.31)

�6 = − α3β1

α1 − β1
�7 = α1β2

α1 − β1

wt = α1u2t − β1u1t

α1 − β1
vt = u2t − u1t

α1 − β1

The preceding demand-and-supply model contains seven structural coefficients, but
there are eight equations to estimate them—the eight reduced-form coefficients given in
Eq. (19.2.31); that is, the number of equations is greater than the number of unknowns. As
a result, unique estimation of all the parameters of our model is not possible, which can be
shown easily. From the preceding reduced-form coefficients, we can obtain

β1 = �6

�2
(19.2.32)

or

β1 = �5

�1
(19.2.33)

that is, there are two estimates of the price coefficient in the supply function, and there is no
guarantee that these two values or solutions will be identical.4 Moreover, since β1 appears
in the denominators of all the reduced-form coefficients, the ambiguity in the estimation of
β1 will be transmitted to other estimates too.

Why was the supply function identified in the system (19.2.12) and (19.2.22) but not in
the system (19.2.28) and (19.2.22), although in both cases the supply function remains the
same? The answer is that we have “too much,” or an oversufficiency of information, to
identify the supply curve. This situation is the opposite of the case of underidentification,
where there is too little information. The oversufficiency of the information results from the
fact that in the model (19.2.12) and (19.2.22) the exclusion of the income variable from
the supply function was enough to identify it, but in the model (19.2.28) and (19.2.22) the
supply function excludes not only the income variable but also the wealth variable. In other
words, in the latter model we put “too many” restrictions on the supply function by
requiring it to exclude more variables than necessary to identify it. However, this situation
does not imply that overidentification is necessarily bad because we shall see in Chapter 20
how we can handle the problem of too much information, or too many restrictions.

We have now exhausted all the cases. As the preceding discussion shows, an equation in
a simultaneous-equation model may be underidentified or identified (either over- or just).
The model as a whole is identified if each equation in it is identified. To secure identifica-
tion, we resort to the reduced-form equations. But in Section 19.3, we consider an alterna-
tive and perhaps less time-consuming method of determining whether or not an equation in
a simultaneous-equation model is identified.

4Notice the difference between under- and overidentification. In the former case, it is impossible
to obtain estimates of the structural parameters, whereas in the latter case, there may be several 
estimates of one or more structural coefficients.
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19.3 Rules for Identification

As the examples in Section 19.2 show, in principle it is possible to resort to the reduced-
form equations to determine the identification of an equation in a system of simultaneous
equations. But these examples also show how time-consuming and laborious the process
can be. Fortunately, it is not essential to use this procedure. The so-called order and rank
conditions of identification lighten the task by providing a systematic routine.

To understand the order and rank conditions, we introduce the following notations:

M = number of endogenous variables in the model
m = number of endogenous variables in a given equation
K = number of predetermined variables in the model including the intercept
k = number of predetermined variables in a given equation

The Order Condition of Identifiability5

A necessary (but not sufficient) condition of identification, known as the order condition,
may be stated in two different but equivalent ways as follows (the necessary as well as suf-
ficient condition of identification will be presented shortly):

Definition 19.1 In a model of M simultaneous equations, in order for an equation to be identified, it must
exclude at least M − 1 variables (endogenous as well as predetermined) appearing in the
model. If it excludes exactly M − 1 variables, the equation is just identified. If it excludes
more than M − 1 variables, it is overidentified.

Definition 19.2 In a model of M simultaneous equations, in order for an equation to be identified, the
number of predetermined variables excluded from the equation must not be less than the
number of endogenous variables included in that equation less 1, that is,

K − k ≥ m − 1 (19.3.1)

If K − k = m − 1, the equation is just identified, but if K − k > m − 1, it is overidentified.

In Exercise 19.1 the reader is asked to prove that the preceding two definitions of identifi-
cation are equivalent.

To illustrate the order condition, let us revert to our previous examples.

5The term order refers to the order of a matrix, that is, the number of rows and columns present in a
matrix. See Appendix B.

EXAMPLE 19.1 Demand function: Qd
t = α0 + α1Pt + u1t (18.2.1)

Supply function: Qs
t = β0 + β1Pt + u2t (18.2.2)

This model has two endogenous variables P and Q and no predetermined variables. To be
identified, each of these equations must exclude at least M − 1 = 1 variable. Since this is
not the case, neither equation is identified.

EXAMPLE 19.2 Demand function: Qd
t = α0 + α1Pt + α2It + u1t (19.2.12)

Supply function: Qs
t = β0 + β1Pt + u2t (19.2.13)

In this model Q and P are endogenous and I is exogenous. Applying the order condition
given in Eq. (19.3.1), we see that the demand function is unidentified. On the other hand,
the supply function is just identified because it excludes exactly M − 1 = 1 variable It.

guj75772_ch19.qxd  28/08/2008  07:43 PM  Page 699



700 Part Four Simultaneous-Equation Models and Time Series Econometrics

As the previous examples show, identification of an equation in a model of simultaneous
equations is possible if that equation excludes one or more variables that are present else-
where in the model. This situation is known as the exclusion (of variables) criterion, or the
zero restrictions criterion (the coefficients of variables not appearing in an equation are
assumed to have zero values). This criterion is by far the most commonly used method of
securing or determining identification of an equation. But notice that the zero restrictions
criterion is based on a priori or theoretical expectations that certain variables do not appear
in a given equation. It is up to the researcher to spell out clearly why he or she does expect
certain variables to appear in some equations and not in others.

The Rank Condition of Identifiability6

The order condition discussed previously is a necessary but not sufficient condition for iden-
tification; that is, even if it is satisfied, it may happen that an equation is not identified. Thus,
in Example 19.2, the supply equation was identified by the order condition because it
excluded the income variable It , which appeared in the demand function. But identification
is accomplished only if α2, the coefficient of It in the demand function, is not zero, that is,
if the income variable not only probably but actually does enter the demand function.

More generally, even if the order condition K − k ≥ m − 1 is satisfied by an equation, it
may be unidentified because the predetermined variables excluded from this equation but
present in the model may not all be independent so that there may not be one-to-one corre-
spondence between the structural coefficients (the β’s) and the reduced-form coefficients

EXAMPLE 19.3 Demand function: Qd
t = α0 + α1Pt + α2It + u1t (19.2.12)

Supply function: Qs
t = β0 + β1Pt + β2Pt−1 + u2t (19.2.22)

Given that Pt and Qt are endogenous and It and Pt−1 are predetermined, Eq. (19.2.12)
excludes exactly one variable Pt−1 and Eq. (19.2.22) also excludes exactly one variable It.
Hence each equation is identified by the order condition. Therefore, the model as a whole
is identified.

EXAMPLE 19.4 Demand function: Qd
t = α0 + α1Pt + α2It + α3Rt + u1t (19.2.28)

Supply function: Qs
t = β0 + β1Pt + β2Pt−1 + u2t (19.2.22)

In this model Pt and Qt are endogenous and It, Rt, and Pt−1 are predetermined. The demand
function excludes exactly one variable Pt−1, and hence by the order condition it is exactly
identified. But the supply function excludes two variables It and Rt, and hence it is overi-
dentified. As noted before, in this case there are two ways of estimating β1, the coefficient
of the price variable.

Notice a slight complication here. By the order condition the demand function is iden-
tified. But if we try to estimate the parameters of this equation from the reduced-form
coefficients given in Eq. (19.2.31), the estimates will not be unique because β1, which
enters into the computations, takes two values and we shall have to decide which of these
values is appropriate. But this complication can be obviated because it is shown in Chap-
ter 20 that in cases of overidentification the method of indirect least squares is not appro-
priate and should be discarded in favor of other methods. One such method is two-stage
least squares, which we shall discuss fully in Chapter 20.

6The term rank refers to the rank of a matrix and is given by the largest-order square matrix 
(contained in the given matrix) whose determinant is nonzero. Alternatively, the rank of a matrix is
the largest number of linearly independent rows or columns of that matrix. See Appendix B.
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(the �’s). That is, we may not be able to estimate the structural parameters from the reduced-
form coefficients, as we shall show shortly. Therefore, we need both a necessary and suffi-
cient condition for identification. This is provided by the rank condition of identification,
which may be stated as follows:

Rank Condition
of Identification

In a model containing M equations in M endogenous variables, an equation is identified if
and only if at least one nonzero determinant of order (M − 1)(M − 1) can be constructed
from the coefficients of the variables (both endogenous and predetermined) excluded
from that particular equation but included in the other equations of the model.

As an illustration of the rank condition of identification, consider the following hypo-
thetical system of simultaneous equations in which the Y variables are endogenous and the
X variables are predetermined.7

Y1t − β10 − β12Y2t − β13Y3t − γ11 X1t = u1t

(19.3.2)

Y2t − β20 −β23Y3t − γ21 X1t − γ22 X2t = u2t

(19.3.3)

Y3t − β30 − β31Y1t − γ31 X1t − γ32 X2t = u3t

(19.3.4)

Y4t − β40 − β41Y1t − β42Y2t −γ43 X3t = u4t

(19.3.5)

To facilitate identification, let us write the preceding system in Table 19.1, which is self-
explanatory.

Let us first apply the order condition of identification, as shown in Table 19.2. By the
order condition each equation is identified. Let us recheck with the rank condition. Con-
sider the first equation, which excludes variables Y4, X2, and X3 (this is represented by
zeros in the first row of Table 19.1). For this equation to be identified, we must obtain at

7The simultaneous-equation system presented in Eq. (19.1.1) may be shown in the following
alternative form, which may be convenient for matrix manipulations.

TABLE 19.1
Coefficients of the Variables

Equation No. 1 Y1 Y2 Y3 Y4 X1 X2 X3

(19.3.2) −β10 1 −β12 −β13 0 −γ11 0 0
(19.3.3) −β20 0 1 −β23 0 −γ21 −γ22 0
(19.3.4) −β30 −β31 0 1 0 −γ31 −γ32 0
(19.3.5) −β40 −β41 −β42 0 1 0 0 −γ43

TABLE 19.2
No. of Predetermined No. of Endogenous

Variables Excluded, Variables Included,
Equation No. (K − k) Less One, (m − 1) Identified?

(19.3.2) 2 2 Exactly
(19.3.3) 1 1 Exactly
(19.3.4) 1 1 Exactly
(19.3.5) 2 2 Exactly
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702 Part Four Simultaneous-Equation Models and Time Series Econometrics

least one nonzero determinant of order 3 × 3 from the coefficients of the variables excluded
from this equation but included in other equations. To obtain the determinant we first obtain
the relevant matrix of coefficients of variables Y4, X2, and X3 included in the other equa-
tions. In the present case there is only one such matrix, call it A, defined as follows:

A =
[ 0 −γ22 0

0 −γ32 0
1 0 −γ43

]
(19.3.6)

It can be seen that the determinant of this matrix is zero:

det A =
∣∣∣∣∣
0 −γ22 0
0 −γ32 0
1 0 −γ43

∣∣∣∣∣ (19.3.7)

Since the determinant is zero, the rank of the matrix (19.3.6), denoted by ρ(A), is less than 3.
Therefore, Eq. (19.3.2) does not satisfy the rank condition and hence is not identified.

As noted, the rank condition is both a necessary and sufficient condition for identifica-
tion. Therefore, although the order condition shows that Eq. (19.3.2) is identified, the rank
condition shows that it is not. Apparently, the columns or rows of the matrix A given in
Eq. (19.3.6) are not (linearly) independent, meaning that there is some relationship between
the variables Y4, X2, and X3. As a result, we may not have enough information to estimate
the parameters of equation (19.3.2); the reduced-form equations for the preceding model
will show that it is not possible to obtain the structural coefficients of that equation from the
reduced-form coefficients. The reader should verify that by the rank condition Eqs. (19.3.3)
and (19.3.4) are also unidentified but Eq. (19.3.5) is identified.

As the preceding discussion shows, the rank condition tells us whether the equation
under consideration is identified or not, whereas the order condition tells us if it is exactly
identified or overidentified.

To apply the rank condition one may proceed as follows:

1. Write down the system in a tabular form, as shown in Table 19.1.

2. Strike out the coefficients of the row in which the equation under consideration appears.

3. Also strike out the columns corresponding to those coefficients in step (2) which are
nonzero.

4. The entries left in the table will then give only the coefficients of the variables included
in the system but not in the equation under consideration. From these entries form all
possible matrices, like A, of order M − 1 and obtain the corresponding determinants. If
at least one nonvanishing or nonzero determinant can be found, the equation in question
is ( just or over-) identified. The rank of the matrix, say, A, in this case is exactly equal
to M − 1. If all the possible (M − 1)(M − 1) determinants are zero, the rank of the ma-
trix A is less than M − 1 and the equation under investigation is not identified.

Our discussion of the order and rank conditions of identification leads to the following
general principles of identifiability of a structural equation in a system of M simultaneous
equations:

1. If K − k > m − 1 and the rank of the A matrix is M − 1, the equation is overidentified.
2. If K − k = m − 1 and the rank of the matrix A is M − 1, the equation is exactly identified.
3. If K − k ≥ m − 1 and the rank of the matrix A is less than M − 1, the equation is

underidentified.
4. If K − k < m − 1, the structural equation is unidentified. The rank of the A matrix in

this case is bound to be less than M − 1. (Why?)
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Henceforth, when we talk about identification we mean exact identification or overidentifi-
cation. There is no point in considering unidentified, or underidentified, equations because no
matter how extensive the data, the structural parameters cannot be estimated. Besides, most
simultaneous-equation systems in economics and finance are overidentified rather than under-
identified, so we need not worry too much about underidentification. However, as shown in
Chapter 20, parameters of overidentified as well as just identified equations can be estimated.

Which condition should one use in practice: Order or rank? For large simultaneous-
equation models, applying the rank condition is a formidable task. Therefore, as Harvey notes,

Fortunately, the order condition is usually sufficient to ensure identifiability, and although it is
important to be aware of the rank condition, a failure to verify it will rarely result in disaster.8

*19.4 A Test of Simultaneity9

If there is no simultaneous equation, or simultaneity problem, the OLS estimators produce
consistent and efficient estimators. On the other hand, if there is simultaneity, OLS
estimators are not even consistent. In the presence of simultaneity, as we will show in Chap-
ter 20, the methods of two-stage least squares (2SLS) and instrumental variables (IV)
will give estimators that are consistent and efficient. Oddly, if we apply these alternative
methods when there is in fact no simultaneity, these methods yield estimators that are con-
sistent but not efficient (i.e., with smaller variance). This discussion suggests that we should
check for the simultaneity problem before we discard OLS in favor of the alternatives.

As we showed earlier, the simultaneity problem arises because some of the regressors are
endogenous and are therefore likely to be correlated with the disturbance, or error, term.
Therefore, a test of simultaneity is essentially a test of whether (an endogenous) regressor is
correlated with the error term. If it is, the simultaneity problem exists, in which case alter-
natives to OLS must be found; if it is not, we can use OLS. To find out which is the case in
a concrete situation, we can use Hausman’s specification error test.

Hausman Specification Test
A version of the Hausman specification error test that can be used for testing the simul-
taneity problem can be explained as follows:10

To fix ideas, consider the following two-equation model:

Demand function: Qd
t = α0 + α1 Pt + α2 It + α3 Rt + u1t (19.4.1)

Supply function: Qs
t = β0 + β1 Pt + u2t (19.4.2)

where P = price
Q = quantity
I = income
R = wealth

u’s = error terms

Assume that I and R are exogenous. Of course, P and Q are endogenous.

*Optional.
8Andrew Harvey, The Econometric Analysis of Time Series, 2d ed., The MIT Press, Cambridge, Mass.,
1990, p. 328.
9The following discussion draws from Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models
and Economic Forecasts, 3d ed., McGraw-Hill, New York, 1991, pp. 303–305.
10J. A. Hausman, “Specification Tests in Econometrics,” Econometrica, vol. 46, November 1976, 
pp. 1251–1271. See also A. Nakamura and M. Nakamura, “On the Relationship among Several
Specification Error Tests Presented by Durbin, Wu, and Hausman,” Econometrica, vol. 49, November
1981, pp. 1583–1588.
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704 Part Four Simultaneous-Equation Models and Time Series Econometrics

Now consider the supply function (19.4.2). If there is no simultaneity problem (i.e., P
and Q are mutually independent), Pt and u2t should be uncorrelated (why?). On the other
hand, if there is simultaneity, Pt and u2t will be correlated. To find out which is the case, the
Hausman test proceeds as follows:

First, from Eqs. (19.4.1) and (19.4.2) we obtain the following reduced-form equations:

Pt = �0 + �1 It + �2 Rt + vt (19.4.3)

Qt = �3 + �4 It + �5 Rt + wt (19.4.4)

where v and w are the reduced-form error terms. Estimating Eq. (19.4.3) by OLS we obtain

P̂t = �̂0 + �̂1 It + �̂2 Rt (19.4.5)
Therefore,

Pt = P̂t + v̂t (19.4.6)

where P̂t are estimated Pt and v̂t are the estimated residuals. Now consider the following
equation:

Qt = β0 + β1 P̂t + β1v̂t + u2t (19.4.7)

Note: The coefficients of Pt and vt are the same. The difference between this equation and
the original supply equation is that it includes the additional variable v̂t , the residual from
regression (19.4.3).

Now, if the null hypothesis is that there is no simultaneity, that is, Pt is not an endogenous
variable, the correlation between v̂t and u2t should be zero, asymptotically. Thus, if we run the
regression (19.4.7) and find that the coefficient of vt in Eq. (19.4.7) is statistically zero, we can
conclude that there is no simultaneity problem. Of course, this conclusion will be reversed if
we find this coefficient to be statistically significant. In passing, note that Hausman’s simul-
taneity test is also known as the Hausman test of endogeneity: In the present example we want
to find out if Pt is endogenous. If it is, we have the simultaneity problem.

Essentially, then, the Hausman test involves the following steps:

Step 1. Regress Pt on It and Rt to obtain v̂t .

Step 2. Regress Qt on P̂t and v̂t and perform a t test on the coefficient of v̂t . If it is sig-
nificant, do not reject the hypothesis of simultaneity; otherwise, reject it.11 For efficient
estimation, however, Pindyck and Rubinfeld suggest regressing Qt on Pt and v̂t .12

There are alternative ways to apply the Hausman test, which are given by way of an
exercise.

11If more than one endogenous regressor is involved, we will have to use the F test.
12Pindyck and Rubinfeld, op. cit., p. 304. Note: The regressor is Pt and not P̂t .
13Pindyck and Rubinfeld, op. cit., pp. 176–177. Notations slightly altered.

EXAMPLE 19.5
Pindyck–
Rubinfeld Model
of Public
Spending13

To study the behavior of U.S. state and local government expenditure, the authors devel-
oped the following simultaneous-equation model:

EXP = β1 + β2AID + β3INC + β4POP + ui (19.4.8)

AID = δ1 + δ2EXP + δ3PS + vi (19.4.9)

where EXP = state and local government public expenditures
AID = level of federal grants-in-aid
INC = income of states
POP = state population

PS = population of primary and secondary school children
u and v = error terms

In this model, INC, POP, and PS are regarded as exogenous.
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*19.5 Tests for Exogeneity

We noted earlier that it is the researcher’s responsibility to specify which variables are
endogenous and which are exogenous. This will depend on the problem at hand and the a
priori information the researcher has. But is it possible to develop a statistical test of
exogeneity, in the manner of Granger’s causality test?

The Hausman test discussed in Section 19.4 can be utilized to answer this question. Sup-
pose we have a three-equation model in three endogenous variables, Y1, Y2, and Y3, and
suppose there are three exogenous variables, X1, X2, and X3. Further, suppose that the first
equation of the model is

Y1i = β0 + β2Y2i + β3Y3i + α1 X1i + u1i (19.5.1)

If Y2 and Y3 are truly endogenous, we cannot estimate Eq. (19.5.1) by OLS (why?). But
how do we find that out? We can proceed as follows. We obtain the reduced-form equations
for Y2 and Y3 (Note: the reduced-form equations will have only predetermined variables on
the right-hand side). From these reduced-form equations, we obtain Ŷ2i and Ŷ3i , the pre-
dicted values of Y2i and Y3i , respectively. Then in the spirit of the Hausman test discussed
earlier, we can estimate the following equation by OLS:

Y1i = β0 + β2Y2i + β3Y3i + α1 X1i + λ2Ŷ2i + λ3Ŷ3i + u1i (19.5.2)

Using the F test, we test the hypothesis that λ2 = λ3 = 0. If this hypothesis is rejected, Y2

and Y3 can be deemed endogenous, but if it is not rejected, they can be treated as exoge-
nous. For a concrete example, see Exercise 19.16. 

Because of the possibility of simultaneity between EXP and AID, the authors first regress
AID on INC, POP, and PS (i.e., the reduced-form regression). Let the error term in this
regression be wi . From this regression the calculated residual is ŵi . The authors then
regress EXP on AID, INC, POP, and ŵi , to obtain the following results:

ÊXP = −89.41 + 4.50AID + 0.00013INC − 0.518POP − 1.39ŵi

t = (−1.04) (5.89) (3.06) (−4.63) (−1.73) (19.4.10)14

R 2 = 0.99

At the 5 percent level of significance, the coefficient of ŵi is not statistically significant, and
therefore, at this level, there is no simultaneity problem. However, at the 10 percent level
of significance, it is statistically significant, raising the possibility that the simultaneity
problem is present.

Incidentally, the OLS estimation of Eq. (19.4.8) is as follows:

ÊXP = −46.81 + 3.24AID + 0.00019INC − 0.597POP

t = (−0.56) (13.64) (8.12) (−5.71) (19.4.11)

R 2 = 0.993

Notice an interesting feature of the results given in Eqs. (19.4.10) and (19.4.11): When
simultaneity is explicitly taken into account, the AID variable is less significant although
numerically it is greater in magnitude.

*Optional.
14As in footnote 12, the authors use AID rather than ÂID as the regressor.

EXAMPLE 19.5
(Continued)
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706 Part Four Simultaneous-Equation Models and Time Series Econometrics

1. The problem of identification precedes the problem of estimation.

2. The identification problem asks whether one can obtain unique numerical estimates of
the structural coefficients from the estimated reduced-form coefficients.

3. If this can be done, an equation in a system of simultaneous equations is identified. If
this cannot be done, that equation is un- or under-identified.

4. An identified equation can be just identified or overidentified. In the former case,
unique values of structural coefficients can be obtained; in the latter, there may be
more than one value for one or more structural parameters.

5. The identification problem arises because the same set of data may be compatible with
different sets of structural coefficients, that is, different models. Thus, in the regression
of price on quantity only, it is difficult to tell whether one is estimating the supply func-
tion or the demand function, because price and quantity enter both equations.

6. To assess the identifiability of a structural equation, one may apply the technique of
reduced-form equations, which expresses an endogenous variable solely as a function
of predetermined variables.

7. However, this time-consuming procedure can be avoided by resorting to either the order
condition or the rank condition of identification. Although the order condition is easy to
apply, it provides only a necessary condition for identification. On the other hand, the rank
condition is both a necessary and sufficient condition for identification. If the rank condi-
tion is satisfied, the order condition is satisfied, too, although the converse is not true. In
practice, though, the order condition is generally adequate to ensure identifiability.

8. In the presence of simultaneity, OLS is generally not applicable, as was shown in
Chapter 18. But if one wants to use it nonetheless, it is imperative to test for simul-
taneity explicitly. The Hausman specification test can be used for this purpose.

9. Although in practice deciding whether a variable is endogenous or exogenous is a
matter of judgment, one can use the Hausman specification test to determine whether
a variable or group of variables is endogenous or exogenous.

10. Although they are in the same family, the concepts of causality and exogeneity are dif-
ferent and one may not necessarily imply the other. In practice it is better to keep those
concepts separate (see Section 17.14).

Summary and 
Conclusions

Questions
19.1. Show that the two definitions of the order condition of identification (see Sec-

tion 19.3) are equivalent.
19.2. Deduce the structural coefficients from the reduced-form coefficients given in

Eqs. (19.2.25) and (19.2.27).
19.3. Obtain the reduced form of the following models and determine in each case whether

the structural equations are unidentified, just identified, or overidentified:
a. Chap. 18, Example 18.2.
b. Chap. 18, Example 18.3.
c. Chap. 18, Example 18.6.

19.4. Check the identifiability of the models of Exercise 19.3 by applying both the order
and rank conditions of identification.

19.5. In the model (19.2.22) of the text it was shown that the supply equation was overi-
dentified. What restrictions, if any, on the structural parameters will make this
equation just identified? Justify the restrictions you impose.

EXERCISES
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19.6. From the model

Y1t = β10 + β12Y2t + γ11 X1t + u1t

Y2t = β20 + β21Y1t + γ22 X2t + u2t

the following reduced-form equations are obtained:

Y1t = �10 + �11 X1t + �12 X2t + wt

Y2t = �20 + �21 X1t + �22 X2t + vt

a. Are the structural equations identified?

b. What happens to identification if it is known a priori that γ11 = 0?

19.7. Refer to Exercise 19.6. The estimated reduced-form equations are as follows:

Y1t = 4 + 3X1t + 8X2t

Y2t = 2 + 6X1t + 10X2t

a. Obtain the values of the structural parameters.

b. How would you test the null hypothesis that γ11 = 0?

19.8. The model

Y1t = β10 + β12Y2t + γ11 X1t + u1t

Y2t = β20 + β21Y1t + u2t

produces the following reduced-form equations:

Y1t = 4 + 8X1t

Y2t = 2 + 12X1t

a. Which structural coefficients, if any, can be estimated from the reduced-form
coefficients? Demonstrate your contention.

b. How does the answer to (a) change if it is known a priori that (1) β12 = 0 and
(2) β10 = 0?

19.9. Determine whether the structural equations of the model given in Exercise 18.8 are
identified.

19.10. Refer to Exercise 18.7 and find out which structural equations can be identified.

19.11. Table 19.3 is a model in five equations with five endogenous variables Y and four
exogenous variables X:

TABLE 19.3 Coefficients of the Variables

Equation No. Y1 Y2 Y3 Y4 Y5 X1 X2 X3 X4

1 1 β12 0 β14 0 γ11 0 0 γ14

2 0 1 β23 β24 0 0 γ22 γ23 0
3 β31 0 1 β34 β35 0 0 γ33 γ34

4 0 β42 0 1 0 γ41 0 γ43 0
5 β51 0 0 β54 1 0 γ52 γ53 0

Determine the identifiability of each equation with the aid of the order and rank
conditions of identifications.

19.12. Consider the following extended Keynesian model of income determination:

Consumption function: Ct = β1 + β2Yt − β3Tt + u1t

Investment function: It = α0 + α1Yt−1 + u2t

Taxation function: Tt = γ0 + γ1Yt + u3t

Income identity: Yt = Ct + It + Gt
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708 Part Four Simultaneous-Equation Models and Time Series Econometrics

where C = consumption expenditure
Y = income
I = investment
T = taxes
G = government expenditure

u’s = the disturbance terms

In the model the endogenous variables are C, I, T, andY and the predetermined vari-
ables are G and Yt−1.

By applying the order condition, check the identifiability of each of the equa-
tions in the system and of the system as a whole. What would happen if rt , the in-
terest rate, assumed to be exogenous, were to appear on the right-hand side of the
investment function?

19.13. Refer to the data given in Table 18.1 of Chapter 18. Using these data, estimate the
reduced-form regressions (19.1.2) and (19.1.4). Can you estimate β0 and β1? Show
your calculations. Is the model identified? Why or why not?

19.14. Suppose we propose yet another definition of the order condition of identifiability:

K ≥ m + k − 1

which states that the number of predetermined variables in the system can be no
less than the number of unknown coefficients in the equation to be identified. Show
that this definition is equivalent to the two other definitions of the order condition
given in the text.

19.15. A simplified version of Suits’s model of the watermelon market is as follows:*

Demand equation: Pt = α0 + α1(Qt/Nt ) + α2(Yt/Nt ) + α3 Ft + u1t

Crop supply function: Qt = β0 + β1( Pt/Wt ) + β2 Pt−1 + β3Ct−1 + β4Tt−1 + u2t

where P = price
(Q/N ) = per capita quantity demanded
(Y/N ) = per capita income

Ft = freight costs
( P/W ) = price relative to the farm wage rate

C = price of cotton
T = price of other vegetables
N = population

P and Q are the endogenous variables.

a. Obtain the reduced form.

b. Determine whether the demand, the supply, or both functions are identified.

Empirical Exercises
19.16. Consider the following demand-and-supply model for money:

Money demand: Md
t = β0 + β1Yt + β2 Rt + β3 Pt + u1t

Money supply: Ms
t = α0 + α1Yt + u2t

*D. B. Suits, “An Econometric Model of the Watermelon Market,” Journal of Farm Economics, vol. 37,
1955, pp. 237–251.
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where M =money
Y = income
R = rate of interest
P = price

u’s = error terms

Assume that R and P are exogenous and M and Y are endogenous. Table 19.4 gives
data on M (M2 definition), Y (GDP), R (3-month Treasury bill rate) and P (Con-
sumer Price Index), for the United States for 1970–2006.

TABLE 19.4
Money, GDP, Interest
Rate, and Consumer
Price Index, United
States, 1970–2006

Observation M2 GDP TBRATE CPI

1970 626.5 3,771.9 6.458 38.8
1971 710.3 3,898.6 4.348 40.5
1972 802.3 4,105.0 4.071 41.8
1973 855.5 4,341.5 7.041 44.4
1974 902.1 4,319.6 7.886 49.3
1975 1,016.2 4,311.2 5.838 53.8
1976 1,152.0 4,540.9 4.989 56.9
1977 1,270.3 4,750.5 5.265 60.6
1978 1,366.0 5,015.0 7.221 65.2
1979 1,473.7 5,173.4 10.041 72.6
1980 1,599.8 5,161.7 11.506 82.4
1981 1,755.5 5,291.7 14.029 90.9
1982 1,910.1 5,189.3 10.686 96.5
1983 2,126.4 5,423.8 8.63 99.6
1984 2,309.8 5,813.6 9.58 103.9
1985 2,495.5 6,053.7 7.48 107.6
1986 2,732.2 6,263.6 5.98 109.6
1987 2,831.3 6,475.1 5.82 113.6
1988 2,994.3 6,742.7 6.69 118.3
1989 3,158.3 6,981.4 8.12 124.0
1990 3,277.7 7,112.5 7.51 130.7
1991 3,378.3 7,100.5 5.42 136.2
1992 3,431.8 7,336.6 3.45 140.3
1993 3,482.5 7,532.7 3.02 144.5
1994 3,498.5 7,835.5 4.29 148.2
1995 3,641.7 8,031.7 5.51 152.4
1996 3,820.5 8,328.9 5.02 156.9
1997 4,035.0 8,703.5 5.07 160.5
1998 4,381.8 9,066.9 4.81 163.0
1999 4,639.2 9,470.3 4.66 166.6
2000 4,921.7 9,817.0 5.85 172.2
2001 5,433.5 9,890.7 3.45 177.1
2002 5,779.2 10,048.8 1.62 179.9
2003 6,071.2 10,301.0 1.02 184.0
2004 6,421.6 10,675.8 1.38 188.9
2005 6,691.7 11,003.4 3.16 195.3
2006 7,035.5 11,319.4 4.73 201.6

Notes: M2 = M2 Money supply (billions of dollars).
GDP = gross domestic product (billions of dollars).

TBRATE = 3-month Treasury bill rate, %.
CPI = Consumer Price Index (1982–1984 = 100).

Source: Economic Report of the
President, 2007, Tables B-2, 
B-60, B-69, B-73.
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710 Part Four Simultaneous-Equation Models and Time Series Econometrics

a. Is the demand function identified?

b. Is the supply function identified?

c. Obtain the expressions for the reduced-form equations for M and Y.

d. Apply the test of simultaneity to the supply function.

e. How would we find out if Y in the money supply function is in fact endogenous?

19.17. The Hausman test discussed in the text can also be conducted in the following way.
Consider Eq. (19.4.7):

Qt = β0 + β1 Pt + β1vt + u2t

a. Since Pt and vt have the same coefficients, how would you test that in a given
application that is indeed the case? What are the implications of this?

b. Since Pt is uncorrelated with u2t by design (why?), one way to find out if Pt is
exogenous is to see if vt is correlated with u2t . How would you go about testing
this? Which test do you use? (Hint: Substitute Pt from [19.4.6] into Eq. [19.4.7].)
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Having discussed the nature of the simultaneous-equation models in the previous two chap-
ters, in this chapter we turn to the problem of estimation of the parameters of such models.
At the outset it may be noted that the estimation problem is rather complex because there
are a variety of estimation techniques with varying statistical properties. In view of the in-
troductory nature of this text, we shall consider only a few of these techniques. Our discus-
sion will be simple and often heuristic, the finer points being left to the references.

20.1 Approaches to Estimation

If we consider the general M equations model in M endogenous variables given in Eq. (19.1.1),
we may adopt two approaches to estimate the structural equations, namely, single-equation
methods, also known as limited information methods, and system methods, also known
as full information methods. In the single-equation methods to be considered shortly, we
estimate each equation in the system (of simultaneous equations) individually, taking into
account any restrictions placed on that equation (such as exclusion of some variables) with-
out worrying about the restrictions on the other equations in the system,1 hence the name
limited information methods. In the system methods, on the other hand, we estimate all the
equations in the model simultaneously, taking due account of all restrictions on such equa-
tions by the omission or absence of some variables (recall that for identification such
restrictions are essential), hence the name full information methods.

As an example, consider the following four-equations model:

Y1t = β10 + + β12Y2t + β13Y3t + + γ11X1t + + u1t

Y2t = β20 + + β23Y3t + γ21X1t + γ22X2t + u2t

Y3t = β30 + β31Y1t + + β34Y4t + γ31X1t + γ32X2t + + u3t

Y4t = β40 + + β42Y2t + γ43X3t + u4t

(20.1.1)

Chapter 20
Simultaneous-Equation
Methods

1For the purpose of identification, however, information provided by other equations will have to be
taken into account. But as noted in Chapter 19, estimation is possible only in the case of (fully or
over-) identified equations. In this chapter we assume that the identification problem is solved using
the techniques of Chapter 19.
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712 Part Four Simultaneous-Equation Models and Time Series Econometrics

where the Y ’s are the endogenous variables and the X ’s are the exogenous variables. If we
are interested in estimating, say, the third equation, the single-equation methods will con-
sider this equation only, noting that variables Y2 and X3 are excluded from it. In the systems
methods, on the other hand, we try to estimate all four equations simultaneously, taking into
account all the restrictions imposed on the various equations of the system.

To preserve the spirit of simultaneous-equation models, ideally one should use the sys-
tems method, such as the full information maximum likelihood (FIML) method.2 In
practice, however, such methods are not commonly used for a variety of reasons. First, the
computational burden is enormous. For example, the comparatively small (20 equations)
1955 Klein–Goldberger model of the U.S. economy had 151 nonzero coefficients, of which
the authors estimated only 51 coefficients using the time series data. The Brookings-Social
Science Research Council (SSRC) econometric model of the U.S. economy published in
1965 initially had 150 equations.3 Although such elaborate models may furnish finer details
of the various sectors of the economy, the computations are a stupendous task even in these
days of high-speed computers, not to mention the cost involved. Second, the systems meth-
ods, such as FIML, lead to solutions that are highly nonlinear in the parameters and are
therefore often difficult to determine. Third, if there is a specification error (say, a wrong
functional form or exclusion of relevant variables) in one or more equations of the system,
that error is transmitted to the rest of the system. As a result, the systems methods become
very sensitive to specification errors.

In practice, therefore, single-equation methods are often used. As Klein puts it,

Single equation methods, in the context of a simultaneous system, may be less sensitive to
specification error in the sense that those parts of the system that are correctly specified may
not be affected appreciably by errors in specification in another part.4

In the rest of the chapter we shall deal with single-equation methods only. Specifically,
we shall discuss the following single-equation methods:

1. Ordinary least squares (OLS)

2. Indirect least squares (ILS)

3. Two-stage least squares (2SLS)

20.2 Recursive Models and Ordinary Least Squares

We saw in Chapter 18 that, because of the interdependence between the stochastic distur-
bance term and the endogenous explanatory variable(s), the OLS method is inappropriate
for the estimation of an equation in a system of simultaneous equations. If applied erro-
neously, then, as we saw in Section 18.3, the estimators are not only biased (in small sam-
ples) but also inconsistent; that is, the bias does not disappear no matter how large the
sample size. There is, however, one situation where OLS can be applied appropriately even
in the context of simultaneous equations. This is the case of the recursive, triangular, or

2For a simple discussion of this method, see Carl F. Christ, Econometric Models and Methods, John
Wiley & Sons, New York, 1966, pp. 395–401.
3James S. Duesenberry, Gary Fromm, Lawrence R. Klein, and Edwin Kuh, eds., A Quarterly Model of the
United States Economy, Rand McNally, Chicago, 1965.
4Lawrence R. Klein, A Textbook of Econometrics, 2d ed., Prentice Hall, Englewood Cliffs, NJ, 1974,
p. 150.
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causal models. To see the nature of these models, consider the following three-equation
system:

Y1t = β10 + γ11X1t + γ12X2t + u1t

Y2t = β20 + β21Y1t + γ21X1t + γ22X2t + u2t (20.2.1)

Y3t = β30 + β31Y1t + β32Y2t + γ31X1t + γ32X2t + u3t

where, as usual, the Y ’s and the X’s are, respectively, the endogenous and exogenous
variables. The disturbances are such that

cov (u1t, u2t) = cov (u1t, u3t) = cov (u2t, u3t) = 0

that is, the same-period disturbances in different equations are uncorrelated (technically, this
is the assumption of zero contemporaneous correlation).

Now consider the first equation of (20.2.1). Since it contains only the exogenous vari-
ables on the right-hand side and since by assumption they are uncorrelated with the distur-
bance term u1t, this equation satisfies the critical assumption of the classical OLS, namely,
uncorrelatedness between the explanatory variables and the stochastic disturbances.
Hence, OLS can be applied straightforwardly to this equation. Next consider the second
equation of (20.2.1), which contains the endogenous variable Y1 as an explanatory variable
along with the nonstochastic X’s. Now OLS can also be applied to this equation, provided
Y1t and u2t are uncorrelated. Is this so? The answer is yes because u1, which affects Y1, is by
assumption uncorrelated with u2. Therefore, for all practical purposes, Y1 is a predeter-
mined variable insofar as Y2 is concerned. Hence, one can proceed with OLS estimation of
this equation. Carrying this argument a step further, we can also apply OLS to the third
equation in (20.2.1) because both Y1 and Y2 are uncorrelated with u3.

Thus, in the recursive system OLS can be applied to each equation separately.Actually, we
do not have a simultaneous-equation problem in this situation. From the structure of such
systems, it is clear that there is no interdependence among the endogenous variables.Thus, Y1

affects Y2, but Y2 does not affect Y1. Similarly, Y1 and Y2 influence Y3 without, in turn, being
influenced by Y3. In other words, each equation exhibits a unilateral causal dependence, hence
the name causal models.5 Schematically, we have Figure 20.1.

Y3

Y2

Y1u1

u2

u3

(X1, X2)

FIGURE 20.1
Recursive model.

5The alternative name triangular stems from the fact that if we form the matrix of the coefficients of
the endogenous variables given in Eq. (20.2.1), we obtain the following triangular matrix:




Y1 Y2 Y3

Equation 1 1 0 0

Equation 2 β21 1 0

Equation 3 β31 β32 1




Note that the entries above the main diagonal are zeros (why?).
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714 Part Four Simultaneous-Equation Models and Time Series Econometrics

As an example of a recursive system, one may postulate the following model of wage
and price determination:

Price equation: Ṗt = β10 + β11Ẇt−1 + β12 Ṙt + β13 Ṁt + β14 L̇ t + u1t

Wage equation: Ẇt = β20 + β21UNt + β32 Ṗt + u2t (20.2.2)

where Ṗ = rate of change of price per unit of output
Ẇ = rate of change of wages per employee
Ṙ = rate of change of price of capital

Ṁ = rate of change of import prices
L̇ = rate of change of labor productivity

UN = unemployment rate, %6

The price equation postulates that the rate of change of price in the current period is a
function of the rates of change in the prices of capital and of raw material, the rate of
change in labor productivity, and the rate of change in wages in the previous period. The
wage equation shows that the rate of change in wages in the current period is determined
by the current period rate of change in price and the unemployment rate. It is clear that the
causal chain runs from Ẇt−1 → Ṗt → Ẇt , and hence OLS may be applied to estimate the
parameters of the two equations individually.

Although recursive models have proved to be useful, most simultaneous-equation mod-
els do not exhibit such a unilateral cause-and-effect relationship. Therefore, OLS, in gen-
eral, is inappropriate to estimate a single equation in the context of a simultaneous-equation
model.7

There are some who argue that, although OLS is generally inapplicable to simultaneous-
equation models, one can use it, if only as a standard or norm of comparison. That is, one
can estimate a structural equation by OLS, with the resulting properties of biasedness,
inconsistency, etc. Then the same equation may be estimated by other methods especially
designed to handle the simultaneity problem and the results of the two methods compared,
at least qualitatively. In many applications the results of the inappropriately applied
OLS may not differ very much from those obtained by more sophisticated methods, as
we shall see later. In principle, one should not have much objection to the production of
the results based on OLS so long as estimates based on alternative methods devised for
simultaneous-equation models are also given. In fact, this approach might give us some
idea about how badly OLS does in situations when it is applied inappropriately.8

6Note: The dotted symbol means “time derivative.” For example, Ṗ = dP/dt. For discrete time series,
dP/dt is sometimes approximated by �P/�t, where the symbol � is the first difference operator,
which was originally introduced in Chapter 12.
7It is important to keep in mind that we are assuming that the disturbances across equations are
contemporaneously uncorrelated. If this is not the case, we may have to resort to the Zellner SURE
(seemingly unrelated regressions) estimation technique to estimate the parameters of the recursive
system. See A. Zellner, “An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests
for Aggregation Bias,” Journal of the American Statistical Association, vol. 57, 1962, pp. 348–368.
8It may also be noted that in small samples the alternative estimators, like the OLS estimators, are also
biased. But the OLS estimator has the “virtue” that it has minimum variance among these alternative
estimators. But this is true of small samples only.
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20.3 Estimation of a Just Identified Equation: The Method
of Indirect Least Squares (ILS)

For a just or exactly identified structural equation, the method of obtaining the estimates of
the structural coefficients from the OLS estimates of the reduced-form coefficients is known
as the method of indirect least squares (ILS), and the estimates thus obtained are known
as the indirect least-squares estimates. ILS involves the following three steps:

Step 1. We first obtain the reduced-form equations. As noted in Chapter 19, these
reduced-form equations are obtained from the structural equations in such a manner
that the dependent variable in each equation is the only endogenous variable and is a
function solely of the predetermined (exogenous or lagged endogenous) variables and
the stochastic error term(s).

Step 2. We apply OLS to the reduced-form equations individually. This operation is
permissible since the explanatory variables in these equations are predetermined and
hence uncorrelated with the stochastic disturbances. The estimates thus obtained are
consistent.9

Step 3. We obtain estimates of the original structural coefficients from the estimated
reduced-form coefficients obtained in Step 2. As noted in Chapter 19, if an equation is
exactly identified, there is a one-to-one correspondence between the structural and
reduced-form coefficients; that is, one can derive unique estimates of the former from
the latter.

As this three-step procedure indicates, the name ILS derives from the fact that structural
coefficients (the object of primary enquiry in most cases) are obtained indirectly from the
OLS estimates of the reduced-form coefficients.

An Illustrative Example
Consider the demand-and-supply model introduced in Section 19.2, which for convenience
is given below with a slight change in notation:

Demand function: Qt = α0 + α1 Pt + α2 Xt + u1t (20.3.1)

Supply function: Qt = β0 + β1 Pt + u2t (20.3.2)

where Q = quantity
P = price
X = income or expenditure

Assume that X is exogenous. As noted previously, the supply function is exactly identified
whereas the demand function is not identified.

The reduced-form equations corresponding to the preceding structural equations are

Pt = �0 + �1 Xt + wt (20.3.3)

Qt = �2 + �3 Xt + vt (20.3.4)

9In addition to being consistent, the estimates “may be best unbiased and/or asymptotically efficient,
depending respectively upon whether (i) the z’s [ = X ’s] are exogenous and not merely predeter-
mined [i.e., do not contain lagged values of endogenous variables] and/or (ii) the distribution of the
disturbances is normal.” See W. C. Hood and Tjalling C. Koopmans, Studies in Econometric Method,
John Wiley & Sons, New York, 1953, p. 133.
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716 Part Four Simultaneous-Equation Models and Time Series Econometrics

where the �’s are the reduced-form coefficients and are (nonlinear) combinations of the
structural coefficients, as shown in Eqs. (19.2.16) and (19.2.18), and where w and v are
linear combinations of the structural disturbances u1 and u2.

Notice that each reduced-form equation contains only one endogenous variable, which
is the dependent variable and which is a function solely of the exogenous variable X
(income) and the stochastic disturbances. Hence, the parameters of the preceding reduced-
form equations may be estimated by OLS. These estimates are

�̂1 =
∑

pt xt∑
x2

t
(20.3.5)

�̂0 = P̄ − �̂1 X̄ (20.3.6)

�̂3 =
∑

qt xt∑
x2

t
(20.3.7)

�̂2 = Q̄ − �̂3 X̄ (20.3.8)

where the lowercase letters, as usual, denote deviations from sample means and where Q̄
and P̄ are the sample mean values of Q and P. As noted previously, the �̂i ’s are consistent
estimators and under appropriate assumptions are also minimum variance unbiased or
asymptotically efficient (see footnote 9).

Since our primary objective is to determine the structural coefficients, let us see if we
can estimate them from the reduced-form coefficients. Now as shown in Section 19.2, the
supply function is exactly identified. Therefore, its parameters can be estimated uniquely
from the reduced-form coefficients as follows:

β0 = �2 − β1�0 and β1 = �3

�1

Hence, the estimates of these parameters can be obtained from the estimates of the
reduced-form coefficients as

β̂0 = �̂2 − β̂1�̂0 (20.3.9)

β̂1 = �̂3

�̂1

(20.3.10)

which are the ILS estimators. Note that the parameters of the demand function cannot be
thus estimated (however, see Exercise 20.13).

To give some numerical results, we obtained the data shown in Table 20.1. First we esti-
mate the reduced-form equations, regressing separately price and quantity on per capita
real consumption expenditure. The results are as follows:

P̂t = 90.9601 + 0.0007Xt

se = (4.0517) (0.0002) (20.3.11)
t = (22.4499) (3.0060) R2 = (0.2440)

Q̂t = 59.7618 + 0.0020Xt

se = (1.5600) (0.00009) (20.3.12)

t = (38.3080) (20.9273) R2 = 0.9399

Using Eqs. (20.3.9) and (20.3.10), we obtain these ILS estimates:

β̂0 = −183.7043 (20.3.13)

β̂1 = 2.6766 (20.3.14)
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Therefore, the estimated ILS regression is10

Q̂t = −183.7043 + 2.6766Pt (20.3.15)

For comparison, we give the results of the (inappropriately applied) OLS regression of
Q on P:

Q̂t = 20.89 + 0.673Pt

se = (23.04) (0.2246) (20.3.16)
t = (0.91) (2.99) R2 = 0.2430

These results show how OLS can distort the “true” picture when it is applied in inappro-
priate situations.

TABLE 20.1
Crop Production,
Crop Prices, and
per Capita Personal
Consumption
Expenditures, 2007
Dollars, United
States, 1975–2004

Source: Economic Report of the
President, 2007. Data on Q
(Table B-99), on P
(Table B-101), and on X
(Table B-31).

Index of Crop Index of Crop Prices Real per Capita
Production Received by Farmers Personal Consumption

Observation (1996 = 100), Q (1990–1992 = 100), P Expenditure, X

1975 66 88 4,789
1976 67 87 5,282
1977 71 83 5,804
1978 73 89 6,417
1979 78 98 7,073
1980 75 107 7,716
1981 81 111 8,439
1982 82 98 8,945
1983 71 108 9,775
1984 81 111 10,589
1985 85 98 11,406
1986 82 87 12,048
1987 84 86 12,766
1988 80 104 13,685
1989 86 109 14,546
1990 90 103 15,349
1991 90 101 15,722
1992 96 101 16,485
1993 91 102 17,204
1994 101 105 18,004
1995 96 112 18,665
1996 100 127 19,490
1997 104 115 20,323
1998 105 107 21,291
1999 108 97 22,491
2000 108 96 23,862
2001 108 99 24,722
2002 107 105 25,501
2003 108 111 26,463
2004 112 117 27,937

10We have not presented the standard errors of the estimated structural coefficients because, as
noted previously, these coefficients are generally nonlinear functions of the reduced-form coefficients
and there is no simple method of estimating their standard errors from the standard errors of the
reduced-form coefficients. For large-sample size, however, standard errors of the structural
coefficients can be obtained approximately. For details, see Jan Kmenta, Elements of Econometrics,
Macmillan, New York, 1971, p. 444.
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718 Part Four Simultaneous-Equation Models and Time Series Econometrics

Properties of ILS Estimators
We have seen that the estimators of the reduced-form coefficients are consistent and under
appropriate assumptions also best unbiased or asymptotically efficient (see footnote 9). Do
these properties carry over to the ILS estimators? It can be shown that the ILS estimators
inherit all the asymptotic properties of the reduced-form estimators, such as consistency
and asymptotic efficiency. But (the small sample) properties such as unbiasedness do not
generally hold true. It is shown in Appendix 20A, Section 20A.1, that the ILS estimators β̂0

and β̂1 of the supply function given previously are biased but the bias disappears as the
sample size increases indefinitely (that is, the estimators are consistent).11

20.4 Estimation of an Overidentified Equation: The Method
of Two-Stage Least Squares (2SLS)

Consider the following model:

Income function: Y1t = β10 + + β11Y2t + γ11X1t + γ12X2t + u1t

(20.4.1)

Money supply Y2t = β20 + β21Y1t + u2t

function: (20.4.2)

where Y1 = income
Y2 = stock of money
X1 = investment expenditure
X2 = government expenditure on goods and services

The variables X1 and X2 are exogenous.
The income equation, a hybrid of quantity-theory–Keynesian approaches to income de-

termination, states that income is determined by money supply, investment expenditure, and
government expenditure. The money supply function postulates that the stock of money is
determined (by the Federal Reserve System) on the basis of the level of income. Obviously,
we have a simultaneous-equation problem, which can be checked by the simultaneity test
discussed in Chapter 19.

Applying the order condition of identification, we can see that the income equation is
underidentified whereas the money supply equation is overidentified. There is not much
that can be done about the income equation short of changing the model specification. The
overidentified money supply function may not be estimated by ILS because there are two
estimates of β21 (the reader should verify this via the reduced-form coefficients).

As a matter of practice, one may apply OLS to the money supply equation, but the
estimates thus obtained will be inconsistent in view of the likely correlation between
the stochastic explanatory variable Y1 and the stochastic disturbance term u2. Suppose,
however, we find a “proxy” for the stochastic explanatory variable Y1 such that, although
“resembling” Y1 (in the sense that it is highly correlated with Y1), it is uncorrelated with u2.
Such a proxy is also known as an instrumental variable (see Chapter 17). If one can find
such a proxy, OLS can be used straightforwardly to estimate the money supply function.

11Intuitively this can be seen as follows: E (β̂1) = β1 if E (�̂3/�̂1) = (�3/�1). Now even if
E (�̂3) = �3 and E (�̂1), = �1, it can be shown that E (�̂3/�̂1) �= E (�̂3)/E (�̂1); that is, the
expectation of the ratio of two variables is not equal to the ratio of the expectations of the two
variables. However, as shown in Appendix 20A.1, plim (�̂3/�̂1) = plim (�̂3)/plim (�̂1) = �3/�1
since �̂3 and �̂1 are consistent estimators.
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But how does one obtain such an instrumental variable? One answer is provided by the two-
stage least squares (2SLS), developed independently by Henri Theil12 and Robert
Basmann.13 As the name indicates, the method involves two successive applications of
OLS. The process is as follows:

Stage 1. To get rid of the likely correlation between Y1 and u2, regress first Y1 on all the
predetermined variables in the whole system, not just that equation. In the present case,
this means regressing Y1 on X1 and X2 as follows:

Y1t = �̂0 + �̂1 X1t + �̂2 X2t + ût (20.4.3)

where ût are the usual OLS residuals. From Eq. (20.4.3) we obtain

Ŷ1t = �̂0 + �̂1 X1t + �̂2 X2t (20.4.4)

where Ŷ1t is an estimate of the mean value of Y conditional upon the fixed X’s. Note
that Eq. (20.4.3) is nothing but a reduced-form regression because only the exogenous
or predetermined variables appear on the right-hand side.

Equation (20.4.3) can now be expressed as

Y1t = Ŷ1t + ût (20.4.5)

which shows that the stochastic Y1 consists of two parts: Ŷ1t , which is a linear
combination of the nonstochastic X’s, and a random component ût . Following the
OLS theory, Ŷ1t and ût are uncorrelated. (Why?)

Stage 2. The overidentified money supply equation can now be written as

Y2t = β20 + β21(Ŷ1t + ût ) + u2t

= β20 + β21Ŷ1t + (u2t + β21ût ) (20.4.6)

= β20 + β21Ŷ1t + u∗
t

where u∗
t = u2t + β21ût .

Comparing Eq. (20.4.6) with Eq. (20.4.2), we see that they are very similar in ap-
pearance, the only difference being that Y1 is replaced by Ŷ1. What is the advantage of
Eq. (20.4.6)? It can be shown that although Y1 in the original money supply equation is
correlated or likely to be correlated with the disturbance term u2 (hence rendering OLS
inappropriate), Ŷ1t in Eq. (20.4.6) is uncorrelated with u∗

t asymptotically, that is, in the
large sample (or more accurately, as the sample size increases indefinitely). As a result,
OLS can be applied to Eq. (20.4.6), which will give consistent estimates of the para-
meters of the money supply function.14

12Henri Theil, “Repeated Least-Squares Applied to Complete Equation Systems,” The Hague: The
Central Planning Bureau, The Netherlands, 1953 (mimeographed).
13Robert L. Basmann, “A Generalized Classical Method of Linear Estimation of Coefficients in a
Structural Equation,” Econometrica, vol. 25, 1957, pp. 77–83.
14But note that in small samples Ŷ1t is likely to be correlated with u∗

i . The reason is as follows: From
Eq. (20.4.4) we see that Ŷ1t is a weighted linear combination of the predetermined X’s, with �̂’s as
the weights. Now even if the predetermined variables are truly nonstochastic, the �̂’s, being estima-
tors, are stochastic. Therefore, Ŷ1t is stochastic too. Now from our discussion of the reduced-form
equations and indirect least-squares estimation, it is clear that the reduced-coefficients, the �̂’s, are
functions of the stochastic disturbances, such as u2. And since Ŷ1t depends on the �̂’s, it is likely to be
correlated with u2, which is a component of u∗

t . As a result, Ŷ1t is expected to be correlated with u∗
t .

But as noted previously, this correlation disappears as the sample size tends to infinity. The upshot of
all this is that in small samples the 2SLS procedure may lead to biased estimation.
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As this two-stage procedure indicates, the basic idea behind 2SLS is to “purify” the sto-
chastic explanatory variable Y1 of the influence of the stochastic disturbance u2. This goal
is accomplished by performing the reduced-form regression of Y1 on all the predetermined
variables in the system (Stage 1), obtaining the estimates Ŷ1t and replacing Y1t in the orig-
inal equation by the estimated Ŷ1t , and then applying OLS to the equation thus transformed
(Stage 2). The estimators thus obtained are consistent; that is, they converge to their true
values as the sample size increases indefinitely.

To illustrate 2SLS further, let us modify the income–money supply model as follows:

Y1t = β10 + β12Y2t + γ11X1t + γ12X2t + u1t (20.4.7)

Y2t = β20 + β21Y1t + γ23X3t + γ24X4t + u2t (20.4.8)

where, in addition to the variables already defined, X3 = income in the previous time period
and X4 = money supply in the previous period. Both X3 and X4 are predetermined.

It can be readily verified that both Eqs. (20.4.7) and (20.4.8) are overidentified. To apply
2SLS, we proceed as follows: In Stage 1 we regress the endogenous variables on all the
predetermined variables in the system. Thus,

Y1t = �̂10 + �̂11 X1t + �̂12 X2t + �̂13 X3t + �̂14 X4t + û1t (20.4.9)

Y2t = �̂20 + �̂21 X1t + �̂22 X2t + �̂23 X3t + �̂24 X4t + û2t (20.4.10)

In Stage 2 we replace Y1 and Y2 in the original (structural) equations by their estimated val-
ues from the preceding two regressions and then run the OLS regressions as follows:

Y1t = β10 + β12Ŷ2t + γ11 X1t + γ12 X2t + u∗
1t (20.4.11)

Y2t = β20 + β21Ŷ1t + γ23 X3t + γ24 X4t + u∗
2t (20.4.12)

where u∗
1t = u1t + β12û2t and û∗

2t = u2t + β21û1t . The estimates thus obtained will be
consistent.

Note the following features of 2SLS.

1. It can be applied to an individual equation in the system without directly taking into
account any other equation(s) in the system. Hence, for solving econometric models in-
volving a large number of equations, 2SLS offers an economical method. For this rea-
son the method has been used extensively in practice.

2. Unlike ILS, which provides multiple estimates of parameters in the overidentified
equations, 2SLS provides only one estimate per parameter.

3. It is easy to apply because all one needs to know is the total number of exogenous or pre-
determined variables in the system without knowing any other variables in the system.

4. Although specially designed to handle overidentified equations, the method can also
be applied to exactly identified equations. But then ILS and 2SLS will give identical
estimates. (Why?)

5. If the R2 values in the reduced-form regressions (that is, Stage 1 regressions) are very
high, say, in excess of 0.8, the classical OLS estimates and 2SLS estimates will be very
close. But this result should not be surprising because if the R2 value in the first stage
is very high, it means that the estimated values of the endogenous variables are very
close to their actual values, and hence the latter are less likely to be correlated with
the stochastic disturbances in the original structural equations. (Why?)15 If, however, the

15In the extreme case of R2 = 1 in the first-stage regression, the endogenous explanatory variable in
the original (overidentified) equation will be practically nonstochastic (why?).
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R2 values in the first-stage regressions are very low, the 2SLS estimates will be practi-
cally meaningless because we shall be replacing the original Y’s in the second-stage re-
gressions by the estimated Ŷ ’s from the first-stage regressions, which will essentially
represent the disturbances in the first-stage regressions. In other words, in this case, the
Ŷ ’s will be very poor proxies for the original Y ’s.

6. Notice that in reporting the ILS regression in Eq. (20.3.15) we did not state the standard
errors of the estimated coefficients (for reasons explained in footnote 10). But we can do
this for the 2SLS estimates because the structural coefficients are directly estimated
from the second-stage (OLS) regressions. There is, however, a caution to be exercised.
The estimated standard errors in the second-stage regressions need to be modified
because, as can be seen from Eq. (20.4.6), the error term u∗

t is, in fact, the original error
term u2t plus β21ût . Hence, the variance of u∗

t is not exactly equal to the variance of the
original u2t . However, the modification required can be easily effected by the formula
given in Appendix 20A, Section 20A.2.

7. In using the 2SLS, bear in mind the following remarks of Henri Theil:

The statistical justification of the 2SLS is of the large-sample type. When there are no lagged
endogenous variables, . . . the 2SLS coefficient estimators are consistent if the exogenous
variables are constant in repeated samples and if the disturbance[s] [appearing in the various
behavioral or structural equations] . . . are independently and identically distributed with zero
means and finite variances. . . . If these two conditions are satisfied, the sampling distribution
of 2SLS coefficient estimators becomes approximately normal for large samples. . . .

When the equation system contains lagged endogenous variables, the consistency and
large-sample normality of the 2SLS coefficient estimators require an additional condition, . . .
that as the sample increases the mean square of the values taken by each lagged endogenous
variable converges in probability to a positive limit. . . .

If [the disturbances appearing in the various structural equations are] not independently
distributed, lagged endogenous variables are not independent of the current operation of the
equation system . . . , which means these variables are not really predetermined. If these
variables are nevertheless treated as predetermined in the 2SLS procedure, the resulting
estimators are not consistent.16

20.5 2SLS: A Numerical Example

To illustrate the 2SLS method, consider the income–money supply model given previously
in Eqs. (20.4.1) and (20.4.2). As shown, the money supply equation is overidentified. To
estimate the parameters of this equation, we resort to the two-stage least-squares method.
The data required for analysis are given in Table 20.2; this table also gives some data that
are required to answer some of the questions given in the exercises.

Stage 1 Regression
We first regress the stochastic explanatory variable income Y1, represented by GDP, on the
predetermined variables private investment X1 and government expenditure X2, obtaining
the following results:

Ŷ1t = 2689.848 + 1.8700X1t + 2.0343X2t

se = (67.9874) (0.1717) (0.1075) (20.5.1)

t = (39.5639) (10.8938) (18.9295) R2 = 0.9964

16Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, NJ, 1978, pp. 341–342.
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722 Part Four Simultaneous-Equation Models and Time Series Econometrics

TABLE 20.2
GDP, M2, FEDEXP,
TB6, USA, 1970–2005

Source: Economic Report of the
President, 2007. Tables B-2, 
B-69, B-84, and B-73.

Observation GDP (Y1) M2 (Y2) GPDI (X1) FEDEXP (X2) TB6 (X3)

1970 3,771.9 626.5 427.1 201.1 6.562
1971 3,898.6 710.3 475.7 220.0 4.511
1972 4,105.0 802.3 532.1 244.4 4.466
1973 4,341.5 855.5 594.4 261.7 7.178
1974 4,319.6 902.1 550.6 293.3 7.926
1975 4,311.2 1,016.2 453.1 346.2 6.122
1976 4,540.9 1,152.0 544.7 374.3 5.266
1977 4,750.5 1,270.3 627.0 407.5 5.510
1978 5,015.0 1,366.0 702.6 450.0 7.572
1979 5,173.4 1,473.7 725.0 497.5 10.017
1980 5,161.7 1,599.8 645.3 585.7 11.374
1981 5,291.7 1,755.4 704.9 672.7 13.776
1982 5,189.3 1,910.3 606.0 748.5 11.084
1983 5,423.8 2,126.5 662.5 815.4 8.75
1984 5,813.6 2,310.0 857.7 877.1 9.80
1985 6,053.7 2,495.7 849.7 948.2 7.66
1986 6,263.6 2,732.4 843.9 1,006.0 6.03
1987 6,475.1 2,831.4 870.0 1,041.6 6.05
1988 6,742.7 2,994.5 890.5 1,092.7 6.92
1989 6,981.4 3,158.5 926.2 1,167.5 8.04
1990 7,112.5 3,278.6 895.1 1,253.5 7.47
1991 7,100.5 3,379.1 822.2 1,315.0 5.49
1992 7,336.6 3,432.5 889.0 1,444.6 3.57
1993 7,532.7 3,484.0 968.3 1,496.0 3.14
1994 7,835.5 3,497.5 1,099.6 1,533.1 4.66
1995 8,031.7 3,640.4 1,134.0 1,603.5 5.59
1996 8,328.9 3,815.1 1,234.3 1,665.8 5.09
1997 8,703.5 4,031.6 1,387.7 1,708.9 5.18
1998 9,066.9 4,379.0 1,524.1 1,734.9 4.85
1999 9,470.3 4,641.1 1,642.6 1,787.6 4.76
2000 9,817.0 4,920.9 1,735.5 1,864.4 5.92
2001 9,890.7 5,430.3 1,598.4 1,969.5 3.39
2002 10,048.8 5,774.1 1,557.1 2,101.1 1.69
2003 10,301.0 6,062.0 1,613.1 2,252.1 1.06
2004 10,703.5 6,411.7 1,770.6 2,383.0 1.58
2005 11,048.6 6,669.4 1,866.3 2,555.9 3.40

Notes: Y1 = GDP = gross domestic product (billions of chained 2000 dollars).
Y2 = M2 = M2 money supply (billions of dollars).
X1 = GPDI = gross private domestic investment (billions of chained 2000 dollars).
X2 = FEDEXP = Federal government expenditure (billions of dollars).
X3 = TB6 = 6-month Treasury bill rate (%).

Stage 2 Regression
We now estimate the money supply function (20.4.2), replacing the endogenous variable Y1

by Y1 estimated from Eq. (20.5.1) ( = Ŷ1). The results are as follows:

Ŷ2t = −2440.180 + 0.7920Ŷ1t

se = (127.3720) (0.0178) (20.5.2)

t = (−19.1579) (44.5246) R2 = 0.9831
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As we pointed out previously, the estimated standard errors given in Eq. (20.5.2) need to
be corrected in the manner suggested in Appendix 20.A, Section 20A.2. Effecting
this correction (most econometric packages can do it now), we obtain the following
results:

Ŷ2t = −2440.180 + 0.7920Ŷ1t

se = (126.9598) (0.0212) (20.5.3)

t = (−17.3149) (37.3057) R2 = 0.9803

As noted in Appendix 20A, Section 20A.2, the standard errors given in Eq. (20.5.3) do
not differ much from those given in Eq. (20.5.2) because the R2 in Stage 1 regression is
very high.

OLS Regression
For comparison, we give the regression of money stock on income as shown in Eq. (20.4.2)
without “purging” the stochastic Y1t of the influence of the stochastic disturbance term.

Ŷ2t = −2195.468 + 0.7911Y1t

se = (126.6460) (0.0211) (20.5.4)

t = (−17.3354) (37.3812) R2 = 0.9803

Comparing the “inappropriate” OLS results with the Stage 2 regression, we see that the
two regressions are virtually the same. Does this mean that the 2SLS procedure is worth-
less? Not at all. That in the present situation the two results are practically identical should
not be surprising because, as noted previously, the R2 value in the first stage is very high,
thus making the estimated Ŷ1t virtually identical with the actual Y1t . Therefore, in this case
the OLS and second-stage regressions will be more or less similar. But there is no guaran-
tee that this will happen in every application. An implication, then, is that in overidentified
equations one should not accept the classical OLS procedure without checking the second-
stage regression(s).

Simultaneity between GDP and Money Supply
Let us find out if GDP (Y1) and money supply (Y2) are mutually dependent. For this purpose
we use the Hausman test of simultaneity discussed in Chapter 19.

First we regress GDP on X1 (investment expenditure) and X2 (government expenditure),
the exogenous variables in the system (i.e., we estimate the reduced-form regression). From
this regression we obtain the estimated GDP and the residuals v̂t , as suggested in
Eq. (19.4.7). Then we regress money supply on estimated GDP and vt to obtain the follow-
ing results:

Ŷ2t = −2198.297 + 0.7915Ŷ1t + 0.6984v̂t

se = (129.0548) (0.0215) (0.2970) (20.5.5)

t = (−17.0338) (36.70016) (2.3511)

Since the t value of v̂t is statistically significant (the p value is 0.0263), we cannot reject the
hypothesis of simultaneity between money supply and GDP, which should not be surpris-
ing. (Note: Strictly speaking, this conclusion is valid only in large samples; technically, it
is only valid as the sample size increases indefinitely.)
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Hypothesis Testing
Suppose we want to test the hypothesis that income has no effect on money demand. Can
we test this hypothesis with the usual t test from the estimated regression (20.5.2)? Yes,
provided the sample is large and provided we correct the standard errors as shown in
Eq. (20.5.3), we can use the t test to test the significance of an individual coefficient and the
F test to test joint significance of two or more coefficients, using formula (8.4.7).17

What happens if the error term in a structural equation is autocorrelated and/or corre-
lated with the error term in another structural equation in the system? A full answer to this
question will take us beyond the scope of the book and is better left for the references (see
the reference given in footnote 7). Nevertheless, estimation techniques (such as Zellner’s
SURE technique) do exist to handle these complications.

To conclude the discussion of our numerical example, it may be added that the various
steps involved in the application of 2SLS are now routinely handled by software packages
such as STATA and EViews. It was only for pedagogical reason we showed the details of
2SLS. See Exercise 20.15.

20.6 Illustrative Examples

In this section we consider some applications of the simultaneous-equation methods.

17But take this precaution: The restricted and unrestricted RSS in the numerator must be calculated
using predicted Y (as in Stage 2 of 2SLS) and the RSS in the denominator is calculated using actual
rather than predicted values of the regressors. For an accessible discussion of this point, see T. Dudley
Wallace and J. Lew Silver, Econometrics: An Introduction, Addison–Wesley, Reading, Mass., 1988,
Sec. 8.5.
18See their “Advertising, Concentration, and Price-Cost Margins,” Journal of Political Economy, vol. 84,
no. 5, 1976, pp. 1109–1121.

EXAMPLE 20.1
Advertising,
Concentration,
and Price
Margins

To study the interrelationships among advertising, concentration (as measured by the
concentration ratio), and price-cost margins, Allyn D. Strickland and Leonard W. Weiss
formulated the following three-equation model.18

Advertising intensity function:

Ad/S = a0 + a1M + a2(CD/S) + a3C + a4C2 + a5Gr + a6Dur (20.6.1)

Concentration function:

C = b0 + b1(Ad/S) + b2(MES/S) (20.6.2)

Price-cost margin function:

M = c0 + c1(K/S) + c2Gr + c3C + c4GD + c5(Ad/S) + c6(MES/S) (20.6.3)

where Ad = advertising expense
S = value of shipments
C = four-firm concentration ratio

CD = consumer demand
MES = minimum efficient scale

M = price/cost margin
Gr = annual rate of growth of industrial production

Dur = dummy variable for durable goods industry
K = capital stock

GD = measure of geographic dispersion of output
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By the order conditions for identifiability, Eq. (20.6.2) is overidentified, whereas
Eqs. (20.6.1) and (20.6.3) are exactly identified.

The data for the analysis came largely from the 1963 Census of Manufacturers and
covered 408 of the 417 four-digit manufacturing industries. The three equations were first
estimated by OLS, yielding the results shown in Table 20.3. To correct for the simultaneous-
equation bias, the authors reestimated the model using 2SLS. The ensuing results are
given in Table 20.4. We leave it to the reader to compare the two results.

Dependent Variable

Ad/S C M
Eq. (20.6.1) Eq. (20.6.2) Eq. (20.6.3)

Constant −0.0314 (−7.45) 0.2638 (25.93) 0.1682 (17.15)
C 0.0554 (3.56) — 0.0629 (2.89)
C2 −0.0568 (−3.38) — —
M 0.1123 (9.84) — —
CD/S 0.0257 (8.94) — —
Gr 0.0387 (1.64) 0.2255 (2.61)
Dur −0.0021 (−1.11) — —
Ad/S — 1.1613 (3.3) 1.6536 (11.00)
MES/S — 4.1852 (18.99) 0.0686 (0.54)
K/S — — 0.1123 (8.03)
GD — — −0.0003 (−2.90)
R 2 0.374 0.485 0.402
df 401 405 401

Dependent Variable

Ad/S C M
Eq. (20.6.1) Eq. (20.6.2) Eq. (20.6.3)

Constant −0.0245 (−3.86) 0.2591 (21.30) 0.1736 (14.66)
C 0.0737 (2.84) — 0.0377 (0.93)
C2 −0.0643 (−2.64) — —
M 0.0544 (2.01) — —
CD/S 0.0269 (8.96) — —
Gr 0.0539 (2.09) — 0.2336 (2.61)
Dur −0.0018 (−0.93) — —
Ad/S — 1.5347 (2.42) 1.6256 (5.52)
MES/S — 4.169 (18.84) 0.1720 (0.92)
K/S — — 0.1165 (7.30)
GD — — −0.0003 (−2.79)

TABLE 20.3
OLS Estimates of
Three Equations 
(t ratios in
parentheses)

TABLE 20.4
Two-Stage Least-
Squares Estimates
of Three Equations 
(t ratios in
parentheses)

EXAMPLE 20.2
Klein’s Model I

In Example 18.6 we discussed briefly the pioneering model of Klein. Initially, the model
was estimated for the period 1920–1941. The underlying data are given in Table 20.5; and
OLS, reduced-form, and 2SLS estimates are given in Table 20.6. We leave it to the reader
to interpret these results.

(Continued)

EXAMPLE 20.1
(Continued)
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Year C* P W I K−1 X W ′ G T

1920 39.8 12.7 28.8 2.7 180.1 44.9 2.2 2.4 3.4
1921 41.9 12.4 25.5 −0.2 182.8 45.6 2.7 3.9 7.7
1922 45.0 16.9 29.3 1.9 182.6 50.1 2.9 3.2 3.9
1923 49.2 18.4 34.1 5.2 184.5 57.2 2.9 2.8 4.7
1924 50.6 19.4 33.9 3.0 189.7 57.1 3.1 3.5 3.8
1925 52.6 20.1 35.4 5.1 192.7 61.0 3.2 3.3 5.5
1926 55.1 19.6 37.4 5.6 197.8 64.0 3.3 3.3 7.0
1927 56.2 19.8 37.9 4.2 203.4 64.4 3.6 4.0 6.7
1928 57.3 21.1 39.2 3.0 207.6 64.5 3.7 4.2 4.2
1929 57.8 21.7 41.3 5.1 210.6 67.0 4.0 4.1 4.0
1930 55.0 15.6 37.9 1.0 215.7 61.2 4.2 5.2 7.7
1931 50.9 11.4 34.5 −3.4 216.7 53.4 4.8 5.9 7.5
1932 45.6 7.0 29.0 −6.2 213.3 44.3 5.3 4.9 8.3
1933 46.5 11.2 28.5 −5.1 207.1 45.1 5.6 3.7 5.4
1934 48.7 12.3 30.6 −3.0 202.0 49.7 6.0 4.0 6.8
1935 51.3 14.0 33.2 −1.3 199.0 54.4 6.1 4.4 7.2
1936 57.7 17.6 36.8 2.1 197.7 62.7 7.4 2.9 8.3
1937 58.7 17.3 41.0 2.0 199.8 65.0 6.7 4.3 6.7
1938 57.5 15.3 38.2 −1.9 201.8 60.9 7.7 5.3 7.4
1939 61.6 19.0 41.6 1.3 199.9 69.5 7.8 6.6 8.9
1940 65.0 21.1 45.0 3.3 201.2 75.7 8.0 7.4 9.6
1941 69.7 23.5 53.3 4.9 204.5 88.4 8.5 13.8 11.6

*Interpretation of column heads is listed in Example 18.6.

Source: These data are taken from G. S. Maddala, Econometrics, McGraw-Hill, New York, 1977, p. 238.

OLS:
Ĉ = 16.237 + 0.193P + 0.796(W + W ′) + 0.089P−1 R̄ 2 = 0.978 DW = 1.367

(1.203) (0.091) (0.040) (0.090)
Î = 10.125 + 0.479P + 0.333P−1 − 0.112K−1 R̄ 2 = 0.919 DW = 1.810

(5.465) (0.097) (0.100) (0.026)
Ŵ = 0.064 + 0.439X + 0.146X−1 + 0.130t R̄ 2 = 0.985 DW = 1.958

(1.151) (0.032) (0.037) (0.031)
Reduced-form:

P̂ = 46.383 + 0.813P−1 − 0.213K−1 + 0.015X−1 + 0.297t − 0.926T + 0.443G
(10.870) (0.444) (0.067) (0.252) (0.154) (0.385) (0.373)

R̄ 2 = 0.753 DW = 1.854
Ŵ + W ′ = 40.278 + 0.823P−1 − 0.144K−1 + 0.115X−1 + 0.881t − 0.567T + 0.859G

(8.787) (0.359) (0.054) (0.204) (0.124) (0.311) (0.302)
R̄ 2 = 0.949 DW = 2.395

X̂ = 78.281 + 1.724P−1 − 0.319K−1 + 0.094X−1 + 0.878t − 0.565T + 1.317G
(18.860) (0.771) (0.110) (0.438) (0.267) (0.669) (0.648)

R̄ 2 = 0.882 DW = 2.049
2SLS:

Ĉ = 16.543 + 0.019P + 0.810(W + W ′) + 0.214P−1 R̄ 2 = 0.9726
(1.464) (0.130) (0.044) (0.118)

Î = 20.284 + 0.149P + 0.616P−1 − 0.157K−1 R̄ 2 = 0.8643
(8.361) (0.191) (0.180) (0.040)

Ŵ = 0.065 + 0.438X + 0.146X−1 + 0.130t R̄ 2 = 0.9852
(1.894) (0.065) (0.070) (0.053)

*Interpretation of variables is listed in Example 18.6 (standard errors in parentheses).

EXAMPLE 20.2
(Continued)

TABLE 20.5 Underlying Data for Klein’s Model I

TABLE 20.6*
OLS, Reduced-
Form and 2SLS
Estimates of Klein’s
Model I

Source: G. S. Maddala,
Econometrics, McGraw-Hill,
New York, 1977, p. 242.

726
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EXAMPLE 20.3
The Capital Asset
Pricing Model
Expressed as a
Recursive System

In a rather unusual application of recursive simultaneous-equation modeling, Cheng F. Lee
and W. P. Lloyd19 estimated the following model for the oil industry:

R1t = α1 + γ1Mt + u1t

R2t = α2 + β21R1t + γ2Mt + u2t

R3t = α3 + β31R1t + β32R2t + γ3Mt + u3t

R4t = α4 + β41R1t + β42R2t + β43R3t + γ4Mt + u4t

R5t = α5 + β51R1t + β52R2t + β53R3t + β54R4t + γ5Mt + u5t

R6t = α6 + β61R1t + β62R2t + β63R3t + β64R4t + β65R5t + γ6Mt + u6t

R7t = α7 + β71R1t + β72R2t + β73R3t + β74R4t + β75R5t + β76R6t + γ7Mt + u7t

where R1 = rate of return on security 1 ( = Imperial Oil)
R2 = rate of return on security 2 ( = Sun Oil)
...

R7 = rate of return on security 7 ( = Standard of Indiana)
Mt = rate of return on the market index
uit = disturbances (i = 1, 2, . . . , 7)

Before we present the results, the obvious question is: How do we choose which is
security 1, which is security 2, and so on? Lee and Lloyd answer this question purely
empirically. They regress the rate of return on security i on the rates of return of the
remaining six securities and observe the resulting R 2. Thus, there will be seven such
regressions. Then they order the estimated R 2 values, from the lowest to the highest. The
security having the lowest R 2 is designated as security 1 and the one having the highest
R 2 is designated as security 7. The idea behind this is intuitively simple. If the R 2 of the
rate of return of, say, Imperial Oil, is lowest with respect to the other six securities, it
would suggest that this security is affected least by the movements in the returns of
the other securities. Therefore, the causal ordering, if any, runs from this security to the
others and there is no feedback from the other securities.

Although one may object to such a purely empirical approach to causal ordering, let us
present their empirical results nonetheless, which are given in Table 20.7.

In Exercise 5.5 we introduced the characteristic line of modern investment theory,
which is simply the regression of the rate of return on security i on the market rate of
return. The slope coefficient, known as the beta coefficient, is a measure of the volatility
of the security’s return. What the Lee–Lloyd regression results suggest is that there are
significant intra-industry relationships between security returns, apart from the common
market influence represented by the market portfolio. Thus, Standard of Indiana’s return
depends not only on the market rate of return but also on the rates of return on Shell Oil,
Phillips Petroleum, and Union Oil. To put the matter differently, the movement in the
rate of return on Standard of Indiana can be better explained if in addition to the mar-
ket rate of return we also consider the rates of return experienced by Shell Oil, Phillips
Petroleum, and Union Oil.

19“The Capital Asset Pricing Model Expressed as a Recursive System: An Empirical Investigation,”
Journal of Financial and Quantitative Analysis, June 1976, pp. 237–249.

(Continued)
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Linear Form 
Dependent Variables

Standard Shell Phillips Union Standard Sun Imperial
of Indiana Oil Petroleum Oil of Ohio Oil Oil

Standard
of Indiana
Shell Oil 0.2100*

(2.859)
Phillips 0.2293* 0.0791
Petroleum (2.176) (1.065)
Union Oil 0.1754* 0.2171* 0.2225*

(2.472) (3.177) (2.337)
Standard −0.0794 0.0147 0.4248* 0.1468*
of Ohio (−1.294) (0.235) (5.501) (1.735)
Sun Oil 0.1249 0.1710* 0.0472 0.1339 0.0499

(1.343) (1.843) (0.355) (0.908) (0.271)
Imperial Oil −0.1077 0.0526 0.0354 0.1580 −0.2541* 0.0828

(−1.412) (0.6804) (0.319) (1.290) (−1.691) (0.971)
Constant 0.0868 −0.0384 −0.0127 −0.2034 0.3009 0.2013 0.3710*

(0.681) (1.296) (−0.068) (0.986) (1.204) (1.399) (2.161)
Market index 0.3681* 0.4997* 0.2884 0.7609* 0.9089* 0.7161* 0.6432*

(2.165) (3.039) (1.232) (3.069) (3.094) (4.783) (3.774)
R2 0.5020 0.4658 0.4106 0.2532 0.0985 0.2404 0.1247
Durbin– 2.1083 2.4714 2.2306 2.3468 2.2181 2.3109 1.9592
Watson

*Denotes significance at 0.10 level or better for two-tailed test.
Note: The t values appear in parentheses beneath the coefficients.

Source: Cheng F. Lee and W. P. Lloyd, op. cit., Table 3b.

TABLE 20.7 Recursive System Estimates for the Oil IndustryEXAMPLE 20.3
(Continued)

EXAMPLE 20.4
Revised Form of
St. Louis Model20

The well-known, and often controversial, St. Louis model originally developed in the late
1960s has been revised from time to time. One such revision is given in Table 20.8, and
the empirical results based on this revised model are given in Table 20.9. (Note: A dot over
a variable means the growth rate of that variable.) The model basically consists of Eqs. (1),
(2), (4), and (5) in Table 20.8, the other equations representing the definitions. Equa-
tion (1) was estimated by OLS. Equations (1), (2), and (4) were estimated using the Almon
distributed-lag method with (endpoint) constraints on the coefficients. Where relevant,
the equations were corrected for first-order (ρ1) and/or second-order (ρ2) serial
correlation.

Examining the results, we observe that it is the rate of growth in the money supply that
primarily determines the rate of growth of (nominal) GNP and not the rate of growth
in high-employment expenditures. The sum of the M coefficients is 1.06, suggesting
that a 1 percent (sustained) increase in the money supply on the average leads to about
1.06 percent increase in the nominal GNP. On the other hand, the sum of the E coeffi-
cients, about 0.05, suggests that a change in high-employment government expenditure
has little impact on the rate of growth of nominal GNP. It is left to the reader to interpret
the results of the other regressions reported in Table 20.9.

20Federal Reserve Bank of St. Louis, Review, May 1982, p. 14.
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(1) Ẏ 1 = C1 +
4∑

i=0
C Mi (Ṁt−i ) +

4∑
i=0

C E ( Ė t−i ) + ε1t

(2) Ṗt = C2 +
4∑

i=1
CPEi (ṖEt−i ) +

5∑
i=0

C Di (Ẋ t−i − ẊF*t−i 1)

+ CPA(ṖAt) + CDUM1(DUM1) + CDUM2(DUM2) + ε2t

(3) ṖAt =
21∑

i=1
CPRLi (Ṗ t−i )

(4) RLt = C 3 +
20∑

i=0
CPRLi (Ṗ t−i ) + ε3t

(5) Ut − UFt = CG(GAPt) + CG1(GAPt−1) + ε4t

(6) Yt = (Pt/100)(Xt)

(7) Ẏt = [(Yt/Yt−i)4 − 1]100

(8) Ẋt = [(Xt/Xt−i)4 − 1]100

(9) Ṗt = [(Pt/Pt−i)4 − 1]100

(10) GAPt = [(XFt/Xt)/XFt]100

(11) ẊF*t = [(XFt/Xt−1)4 − 1]100

(1) ̂̇Yt = 2.44 + 0.40Ṁt + 0.39Ṁt−1 + 0.22Ṁt−2 + 0.06Ṁt−3 − 0.01Ṁt−4

(2.15) (3.38) (5.06) (2.18) (0.82) (0.11)
+ 0.06Ė t + 0.02Ėt−1 − 0.02Ėt−2 − 0.02Ėt−3 + 0.01Ėt−4

(1.46) (0.63) (0.57) (0.52) (0.34)
R2 = 0.39 se = 3.50 DW = 2.02

(2) ̂̇Pt = 0.96 + 0.01ṖEt−1 + 0.04ṖEt−2 − 0.01ṖEt−3 + 0.02ṖEt−4

(2.53) (0.75) (1.96) (0.73) (1.38)
− 0.00( Ẋ t− ẊF*t ) + 0.01( Ẋ t−1− ẊF*t−1) + 0.02(Ẋ t−2− ẊF*t−2)

(0.18) (1.43) (4.63)
+ 0.02( Ẋ t−3− ẊF*t−3) + 0.02( Ẋ t−4− ẊF*t−4 + 0.01( Ẋ t−5− ẊF*t−5)

(3.00) (2.42) (2.16)
+ 1.03(ṖAt) − 0.61(DUM1t) + 1.65(DUM2t)

(10.49) (1.02) (2.71)
R2 = 0.80 se = 1.28 DW = 1.97 ρ̂ = 0.12

(4) R̂Lt = 2.97 + 0.96
20∑

i=0
Ṗt−i

(3.12) (5.22) 
R2 = 0.32 se = 0.33 DW = 1.76 ρ̂ = 0.94

(5) ̂Ut − UFt = 0.28(GAPt) + 0.14(GAPt−1)
(11.89) (6.31)

R2 = 0.63 se = 0.17 DW = 1.95 ρ̂1 = 1.43 ρ̂2 = 0.52

TABLE 20.8 The St. Louis Model

TABLE 20.9
In-Sample
Estimation: 1960–I
to 1980–IV
(absolute value of
t statistic
in parentheses)

Source: Federal Reserve
Bank of St. Louis, Review,
May 1982, p. 14.

EXAMPLE 20.4
(Continued)

XF = potential output (Rasche/Tatom)
RL = corporate bond rate

U = unemployment rate
UF = unemployment rate at full employment

DUM1 = control dummy (1971–III to 1973–I = 1; 0 elsewhere)
DUM2 = postcontrol dummy (1973–II to 1975–I = 1; 0 elsewhere)

Y = nominal GNP 
M = money stock (M1)
E = high employment expenditures
P = GNP deflator (1972 = 100)

PE = relative price of energy
X = output in 1972 dollars

Source: Federal Reserve Bank of St. Louis, Review, May 1982, p. 14.
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730 Part Four Simultaneous-Equation Models and Time Series Econometrics

Summary and
Conclusions

1. Assuming that an equation in a simultaneous-equation model is identified (either
exactly or over-), we have several methods to estimate it.

2. These methods fall into two broad categories: Single-equation methods and systems
methods.

3. For reasons of economy, specification errors, etc., the single-equation methods are by far
the most popular. A unique feature of these methods is that one can estimate a single-
equation in a multiequation model without worrying too much about other equations in
the system. (Note: For identification purposes, however, the other equations in the
system count.)

4. Three commonly used single-equation methods are OLS, ILS, and  2SLS.

5. Although OLS is, in general, inappropriate in the context of simultaneous-equation
models, it can be applied to the so-called recursive models where there is a definite but
unidirectional cause-and-effect relationship among the endogenous variables.

6. The method of ILS is suited for just or exactly identified equations. In this method OLS
is applied to the reduced-form equation, and it is from the reduced-form coefficients that
one estimates the original structural coefficients.

7. The method of 2SLS is especially designed for overidentified equations, although it can
also be applied to exactly identified equations. But then the results of 2SLS and ILS are
identical. The basic idea behind 2SLS is to replace the (stochastic) endogenous ex-
planatory variable by a linear combination of the predetermined variables in the model
and use this combination as the explanatory variable in lieu of the original endogenous
variable. The 2SLS method thus resembles the instrumental variable method of
estimation in that the linear combination of the predetermined variables serves as an
instrument, or proxy, for the endogenous regressor.

8. A noteworthy feature of both ILS and 2SLS is that the estimates obtained are consistent,
that is, as the sample size increases indefinitely, the estimates converge to their true
population values. The estimates may not satisfy small-sample properties, such as unbi-
asedness and minimum variance. Therefore, the results obtained by applying these
methods to small samples and the inferences drawn from them should be interpreted
with due caution.

Questions
20.1. State whether each of the following statements is true or false:

a. The method of OLS is not applicable to estimate a structural equation in a
simultaneous-equation model.

b. In case an equation is not identified, 2SLS is not applicable.

c. The problem of simultaneity does not arise in a recursive simultaneous-equation
model.

d. The problems of simultaneity and exogeneity mean the same thing.

e. The 2SLS and other methods of estimating structural equations have desirable
statistical properties only in large samples.

f. There is no such thing as an R2 for the simultaneous-equation model as a whole.
*g. The 2SLS and other methods of estimating structural equations are not applicable

if the equation errors are autocorrelated and/or are correlated across equations.

h. If an equation is exactly identified, ILS and 2SLS give identical results.

EXERCISES

*Optional.
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20.2. Why is it unnecessary to apply the two-stage least-squares method to exactly iden-
tified equations?

20.3. Consider the following modified Keynesian model of income determination:

Ct = β10 + β11Yt + u1t

It = β20 + β21Yt + β22Yt−1 + u2t

Yt = Ct + It + Gt

where C = consumption expenditure
I = investment expenditure
Y = income
G = government expenditure

Gt and Yt−1 are assumed predetermined

a. Obtain the reduced-form equations and determine which of the preceding
equations are identified (either just or over-).

b. Which method will you use to estimate the parameters of the overidentified
equation and of the exactly identified equation? Justify your answer.

20.4. Consider the following results:*

OLS: ̂̇Wt = 0.276 + 0.258Ṗt + 0.046Ṗt−1 + 4.959Vt R2 = 0.924

OLS: ̂̇Pt = 2.693 + 0.232Ẇt − 0.544Ẋt + 0.247Ṁt + 0.064Ṁt−1 R2 = 0.982

2SLS: ̂̇Wt = 0.272 + 0.257Ṗt + 0.046Ṗt−1 + 4.966Vt R2 = 0.920

2SLS: ̂̇Pt = 2.686 + 0.233Ẇt − 0.544Ẋt + 0.246Ṁt + 0.046Ṁt−1 R2 = 0.981

where Ẇt , Ṗt , Ṁt , and Ẋt are percentage changes in earnings, prices, import
prices, and labor productivity (all percentage changes are over the previous year),
respectively, and where Vt represents unfilled job vacancies (percentage of total
number of employees).

“Since the OLS and 2SLS results are practically identical, 2SLS is meaningless.”
Comment.

†20.5. Assume that production is characterized by the Cobb–Douglas production function

Qi = AK α
i Lβ

i

where Q = output
K = capital input
L = labor input

A, α, and β = parameters
i = ith firm

Given the price of final output P, the price of labor W, and the price of capital R,
and assuming profit maximization, we obtain the following empirical model of
production:

Production function:

ln Qi = ln A + α ln Ki + β ln Li + ln u1i (1)

*Source: Prices and Earnings in 1951–1969: An Econometric Assessment, Department of Employment,
United Kingdom, Her Majesty’s Stationery Office, London, 1971, p. 30.
†Optional.
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732 Part Four Simultaneous-Equation Models and Time Series Econometrics

Marginal product of labor function:

ln Qi = − ln β + ln Li + ln
W

P
+ ln u2i (2)

Marginal product of capital function:

ln Qi = − ln α + ln Ki + ln
R

P
+ ln u3i (3)

where u1, u2, and u3 are stochastic disturbances.

In the preceding model there are three equations in three endogenous variables
Q, L, and K. P, R, and W are exogenous.

a. What problems do you encounter in estimating the model if α + β = 1, that is,
when there are constant returns to scale?

b. Even if α + β �= 1, can you estimate the equations? Answer by considering the
identifiability of the system.

c. If the system is not identified, what can be done to make it identifiable?

Note: Equations (2) and (3) are obtained by differentiating Q with respect to labor
and capital, respectively, setting them equal to W/P and R/P, transforming the
resulting expressions into logarithms, and adding (the logarithm of) the disturbance
terms.

20.6. Consider the following demand-and-supply model for money:

Demand for money: Md
t = β0 + β1Y1 + β2 Rt + β3 Pt + u1t

Supply of money: Ms
t = α0 + α1Yt + u2t

where M = money
Y = income
R = rate of interest
P = price

Assume that R and P are predetermined.

a. Is the demand function identified?

b. Is the supply function identified?

c. Which method would you use to estimate the parameters of the identified
equation(s)? Why?

d. Suppose we modify the supply function by adding the explanatory variables Yt−1

and Mt−1. What happens to the identification problem? Would you still use the
method you used in (c)? Why or why not?

20.7. Refer to Exercise 18.10. For the two-equation system there obtain the reduced-form
equations and estimate their parameters. Estimate the indirect least-squares regres-
sion of consumption on income and compare your results with the OLS regression.

Empirical Exercises
20.8. Consider the following model:

Rt = β0 + β1 Mt + β2Yt + u1t

Yt = α0 + α1 Rt + u2t

where Mt (money supply) is exogenous, Rt is the interest rate, and Yt is GDP.

a. How would you justify the model?

b. Are the equations identified?

c. Using the data given in Table 20.2, estimate the parameters of the identified
equations. Justify the method(s) you use.
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Chapter 20 Simultaneous-Equation Methods 733

20.9. Suppose we change the model in Exercise 20.8 as follows:

Rt = β0 + β1 Mt + β2Yt + β3Yt−1 + u1t

Yt = α0 + α1 Rt + u2t

a. Find out if the system is identified.

b. Using the data given in Table 20.2, estimate the parameters of the identified
equation(s).

20.10. Consider the following model:

Rt = β0 + β1 Mt + β2Yt + u1t

Yt = α0 + α1 Rt + α2 It + u2t

where the variables are as defined in Exercise 20.8. Treating I (domestic invest-
ment) and M exogenously, determine the identification of the system. Using the
data given in Table 20.2, estimate the parameters of the identified equation(s).

20.11. Suppose we change the model of Exercise 20.10 as follows:

Rt = β0 + β1 Mt + β2Yt + u1t

Yt = α0 + α1 Rt + α2 It + u2t

It = γ0 + γ1 Rt + u3t

Assume that M is determined exogenously.

a. Find out which of the equations are identified.

b. Estimate the parameters of the identified equation(s) using the data given in
Table 20.2. Justify your method(s).

20.12. Verify the standard errors reported in Eq. (20.5.3).

20.13. Return to the demand-and-supply model given in Eqs. (20.3.1) and (20.3.2).
Suppose the supply function is altered as follows:

Qt = β0 + β1 Pt−1 + u2t

where Pt−1 is the price prevailing in the previous period.

a. If X (expenditure) and Pt−1 are predetermined, is there a simultaneity problem?

b. If there is, are the demand and supply functions each identified? If they are, obtain
their reduced-form equations and estimate them from the data given in Table 20.1.

c. From the reduced-form coefficients, can you derive the structural coefficients?
Show the necessary computations.

20.14. Class Exercise: Consider the following simple macroeconomic model for the U.S.
economy, say, for the period 1960–1999.* 

Private consumption function:

Ct = α0 + α1Yt + α2Ct−1 + u1t α1 > 0, 0 < α2 < 1

Private gross investment function:

It = β0 + β1Yt + β2 Rt + β3 It−1 + u2t β1 > 0, β2 < 0, 0 < β3 < 1

A money demand function:

Rt = λ0 + λ1Yt + λ2 Mt−1 + λ3 Pt + λ4 Rt−1 + u3t

λ1 > 0, λ2 < 0, λ3 > 0, 0 < λ4 < 1

*Adapted from H. R. Seddighi, K. A. Lawler, and A. V. Katos, Econometrics: A Practical Approach,
Routledge, New York, 2000, p. 204.
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734 Part Four Simultaneous-Equation Models and Time Series Econometrics

Income identity:
Yt = Ct + It + Gt

where C = real private consumption; I = real gross private investment, G = real
government expenditure, Y = real GDP, M = M2 money supply at current prices,
R = long-term interest rate (%), and P = Consumer Price Index. The endogenous
variables are C, I, R, and Y. The predetermined variables are: Ct−1, It−1,
Mt−1, Pt , Rt−1, and Gt plus the intercept term. The u’s are the error terms.

a. Using the order condition of identification, determine which of the four equa-
tions are identified, either exact or over-.

b. Which method(s) do you use to estimate the identified equations?

c. Obtain suitable data from government and/or private sources, estimate the
model, and comment on your results.

20.15. In this exercise we examine data for 534 workers obtained from the Current Popu-
lation Survey (CPS) for 1985. The data can be found as Table 20.10 on the textbook
website.* The variables in this table are defined as follows:
W = wages $, per hour; occup = occupation; sector = 1 for manufacturing, 2 for
construction, 0 for other; union = 1 if union member, 0 otherwise; educ = years of
schooling; exper = work experience in years; age = age in years; sex = 1 for
female; marital status = 1 if married; race = 1 for other, 2 for Hispanic, 3 for white;
region = 1 if lives in the South.

Consider the following simple wage determination model:

ln W = β1 + β2Educ + β3Exper + β4Exper2 + ui (1)

a. Suppose education, like wages, is endogenous. How would you find out that in
Equation (1) education is in fact endogenous? Use the data given in the table in
your analysis.

b. Does the Hausman test support your analysis in (a)? Explain fully.

20.16. Class Exercise: Consider the following demand-and-supply model for loans of
commercial banks to businesses:

Demand: Qd
t = α1 + α2 Rt + α2RDt + α4IPIt + u1t

Supply: Qs
t = β1 + β2 Rt + β3RSt + β4TBDt + u2t

Where Q = total commercial bank loans ($billion); R = average prime rate; RS =
3-month Treasury bill rate; RD = AAA corporate bond rate; IPI = Index of
Industrial Production; and TBD = total bank deposits.

a. Collect data on these variables for the period 1980–2007 from various sources,
such as www.economagic.com, the website of the Federal Reserve Bank of
St. Louis, or any other source.

b. Are the demand and supply functions identified? List which variables are
endogenous and which are exogenous.

c. How would you go about estimating the demand and supply functions listed
above? Show the necessary calculations.

d. Why are both R and RS included in the model? What is the role of IPI in the
model?

*Data can be found on the Web, at http://lib.stat.cmu.edu/datasets/cps_85_wages.
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Chapter 20 Simultaneous-Equation Methods 735

Appendix 20A

20A.1 Bias in the Indirect Least-Squares Estimators

To show that the ILS estimators, although consistent, are biased, we use the demand-and-supply
model given in Eqs. (20.3.1) and (20.3.2). From Eq. (20.3.10) we obtain

β̂1 = �̂3

�̂1

Now

�̂3 =
∑

qt xt∑
x2

t
from Eq. (20.3.7)

and

�̂1 =
∑

pt xt∑
x2

t
from Eq. (20.3.5)

Therefore, on substitution, we obtain

β̂1 =
∑

qt xt∑
pt xt

(1)

Using Eqs. (20.3.3) and (20.3.4), we obtain

pt = �1xt + (wt − w̄) (2)

qt = �3xt + (vt − v̄) (3)

where w̄ and v̄ are the mean values of wt and vt, respectively.
Substituting Eqs. (2) and (3) into Eq. (1), we obtain

β̂1 = �3
∑

x2
t + ∑

(vt − v̄)xt

�1
∑

x2
t + ∑

(wt − w̄)xt

= �3 + ∑
(vt − v̄)xt/

∑
x2

t

�1 + ∑
(wt − w̄)xt/

∑
x2

t

(4)

Since the expectation operator E is a linear operator, we cannot take the expectation of Eq. (4),
although it is clear that β̂1 �= (�3/�1) generally. (Why?)

But as the sample size tends to infinity, we can obtain

plim (β̂1) = plim �3 + plim
∑

(vt − v̄)xt/
∑

x2
t

plim �1 + plim
∑

(wt − w̄)xt/
∑

x2
t

(5)

where use is made of the properties of plim, namely, that

plim ( A + B) = plim A + plim B and plim

(
A

B

)
= plim A

plim B

Now as the sample size is increased indefinitely, the second term in both the denominator and the
numerator of Eq. (5) tends to zero (why?), yielding

plim (β̂1) = �3

�1
(6)

showing that, although biased, β̂1 is a consistent estimator of β1.
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736 Part Four Simultaneous-Equation Models and Time Series Econometrics

20A.2 Estimation of Standard Errors 
of 2SLS Estimators

The purpose of this appendix is to show that the standard errors of the estimates obtained from the
second-page regression of the 2SLS procedure, using the formula applicable in OLS estimation, are
not the “proper” estimates of the “true” standard errors. To see this, we use the income–money sup-
ply model given in Eqs. (20.4.1) and (20.4.2). We estimate the parameters of the overidentified money
supply function from the second-stage regression as

Y2t = β20 + β21Ŷ1t + u∗
t (20.4.6)

where

u∗
t = u2t + β21ût (7)

Now when we run regression (20.4.6), the standard error of, say, β̂21 is obtained from the following
expression:

var (β̂21) = σ̂ 2
u∗∑
ŷ2

1t

(8)

where

σ̂ 2
u∗ =

∑
(û∗

t )2

n − 2
=

∑
(Y2t − β̂20 − β̂21Ŷ1t )2

n − 2
(9)

But σ 2
u∗ is not the same thing as σ̂ 2

u2
, where the latter is an unbiased estimate of the true variance

of u2. This difference can be readily verified from Eq. (7). To obtain the true (as defined previously)
σ̂ 2

u2
, we proceed as follows:

û2t = Y2t − β̂20 − β̂21Y1t

where β̂20 and β̂21 are the estimates from the second-stage regression. Hence,

σ̂ 2
u2

=
∑

(Y2t − β̂20 − β̂21Y1t )2

n − 2
(10)

Note the difference between Eqs. (9) and (10): In Eq. (10) we use actual Y1 rather than the estimated
Y1 from the first-stage regression.

Having estimated Eq. (10), the easiest way to correct the standard errors of coefficients estimated
in the second-stage regression is to multiply each one of them by σ̂u2/σ̂ u‡. Note that if Y1t and Ŷ1t are
very close, that is, the R2 in the first-stage regression is very high, the correction factor σ̂u2/σ̂ u* will
be close to 1, in which case the estimated standard errors in the second-stage regression may be taken
as the true estimates. But in other situations, we shall have to use the preceding correction factor.
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