# Part 2: Simultaneous-Equation Models (SEM)

Chapter 17. Endogeneity and Instrumental Variables

Chapter 18. Why Should We Concern SEM?

Chapter 19. What is the Identification Problem?

Chapter 20. How to Estimate SEM?

# Chapter 18. Why Should We Concern SEM?

18.1 The Nature of Simultaneous-Equation Models

18.2 Notes and Relative Definitions

18.3 Is OLS Method Still applicable?





#### **Definition** and basic format of SEM

- Simultaneous Equations Models (SEM): A system of equations consisting of several equations with interrelated or jointly influence.
- The basic and simple SEM is

$$\left\{egin{array}{l} Y_{1i} = eta_{10} + \gamma_{12}Y_{2i} + eta_{11}X_{1i} + u_{i1} \ Y_{2i} = eta_{20} + \gamma_{21}Y_{1i} + eta_{21}X_{1i} + u_{i2} \end{array}
ight.$$



## **Example 1: Demand-and-Supply System**

#### **Demand-and-Supply System:**

$$\left\{egin{aligned} ext{Demand function: } Q_t^d &= lpha_0 + lpha_1 P_t + u_{1t}, & lpha_1 < 0 \ ext{Supply function: } Q_t^s &= eta_0 + eta_1 P_t + u_{2t}, & eta_1 > 0 \ ext{Equilibrium condition: } Q_t^d &= Q_t^s \end{aligned}
ight.$$



# Example 2: Keynesian Model of Income Determination

#### **Keynesian Model of Income Determination:**

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + arepsilon_t & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(income identity)} \end{array}
ight.$$



## Example 3: The IS Model

Macroeconomics goods market equilibrium model, also known as IS Model:

National income identity:  $Y_t = C_t + I_t + G_t$ 

$$egin{cases} ext{Consumption function: } C_t = eta_0 + eta_1 Y_{dt} + u_{1t} & < eta_1 < 1 \ ext{Tax function: } T_t = lpha_0 + lpha_1 Y_t + u_{2t} & 0 < lpha_1 < 1 \ ext{Investment function: } I_t = \gamma_0 + \gamma_1 r_t + u_{3t} \ ext{Definition: } \gamma_{dt} = Y_t - T_t \ ext{Government expenditure: } G_t = ar{G} \ \end{cases}$$

where:

Y =national income;  $Y_d$  =disposable income; r =interest rate;  $\bar{G}$  =given level of government expenditure



## Example 4: The LM Model

Macroeconomics money market equilibrium system, also known as LM Model:

$$egin{cases} ext{Money demand function: } M_t^d = a + bY_t - cr_t + u_t \ ext{Money supply function: } M_t^s = ar{M} \ ext{Equilibrium condition: } M_t^d = M_t^s \end{cases}$$

Where:

Y=income; r=interest rate;  $\bar{M}=$ assumed level of money supply.



## Example 5: Klein's model I

#### Klein's model I:

Consumption function: 
$$C_t = \beta_0 + \beta_1 P_t + \beta_2 (W + W')_t + \beta_3 P_{t-1} + u_{t1}$$

Investment function:  $I_t = \beta_4 + \beta_5 P_t + \beta_6 P_{t-1} + \beta_7 K_{t-1} + u_{t2}$ 

Demand for labor:  $w_t = \beta_8 + \beta_9 (Y + T - W')_t + \beta_{10} (Y + T - W')_{t-1} + \beta_{11} t + u_{t3}$ 

Identity:  $Y_t = C_t + I_t + C_t$ 

Identity:  $Y_t = W'_t + W_t + P_t$ 

Identity:  $K_t = K_{t-1} + I_t$ 

#### Where:

C =consumption expenditure; Y =income after tax; P =profits; W =private wage bill;

W' =government wage bill; K =capital stock; T =taxes.



## Example 6: Murder Rates and Size of the police Force

Cities often want to determine how much additional **law enforcement** will decrease their **murder rates**.

$$\left\{egin{array}{l} \mathrm{murdpc} = lpha_1 \, \mathrm{polpc} + eta_{10} + eta_{11} \mathrm{incpc} + u_1 \ \mathrm{polpc} \, = lpha_2 \, \mathrm{murdpc} + eta_{20} + \, \mathrm{other} \, \mathrm{factors}. \end{array}
ight.$$

#### Where:

murdpc =murders per capita; polpc =number of police officers per capita; incpc =income per capita.



# **Example 7: Housing Expenditures and Saving**

For a random household in the population, we assume that annual **housing** expenditures and saving are jointly determined by:

$$\left\{egin{array}{l} ext{housing} &= lpha_1 ext{saving} + eta_{10} + eta_{11} ext{inc} + eta_{12} educ + eta_{13} ext{age} + u_1 \ ext{saving} &= lpha_2 ext{housing} \, + eta_{20} + eta_{21} ext{inc} + eta_{22} educ + eta_{23} ext{age} + u_2 \end{array}
ight.$$

#### Where:

inc =annual income; saving =household saving; educ =education measured in years; age =age measured in years.



#### The Nature of SEM

The essence of simultaneous equation model is **endogenous variable** problem:

- Each of these equations has its economic causality effect.
- Some of these equations contain endogenous variables.
- Sample data is only the end result of various variables, which lies complex causal interaction behind them.
- Estimation all of the **parameters** directly by OLS method may induce problems.



## Truffles example: the story

**Truffles** are delicious food materials. They are edible fungi that grow below the ground. Consider a supply and demand model for truffles:

$$\left\{egin{aligned} ext{Demand: } Q_{di} &= lpha_1 + lpha_2 P_i + lpha_3 P S_i + lpha_4 D I_i + e_{di} \ ext{Supply: } Q_{si} &= eta_1 + eta_2 P_i + eta_3 P F_i + e_{si} \ ext{Equity: } Q_{di} &= Q_{si} \end{aligned}
ight.$$

#### where:

- $Q_i$  =the quantity of truffles traded in a particular marketplace;
- $P_i$  =the market price of truffles;
- $PS_i$  =the market price of a substitute for real truffles;
- $DI_i$  =per capita monthly disposable income of local residents;
- $PF_i$  =the price of a factor of production, which in this case is the hourly rental price of truffle-pigs used in the search process.



# Truffles example: model variables

#### All variables

| vars | <b>♦</b> label                | <b>*</b> | measure                | <b>*</b> |
|------|-------------------------------|----------|------------------------|----------|
| P    | market price of truffles      |          | dollar/ounce           |          |
| Q    | market quantity of truffles   |          | ounce                  |          |
| PS   | market price of substitute    |          | dollar/ounce           |          |
| DI   | disposable income             |          | dollar/capita, monthly |          |
| PF   | rental price of truffles-pigs |          | dollar/hour            |          |



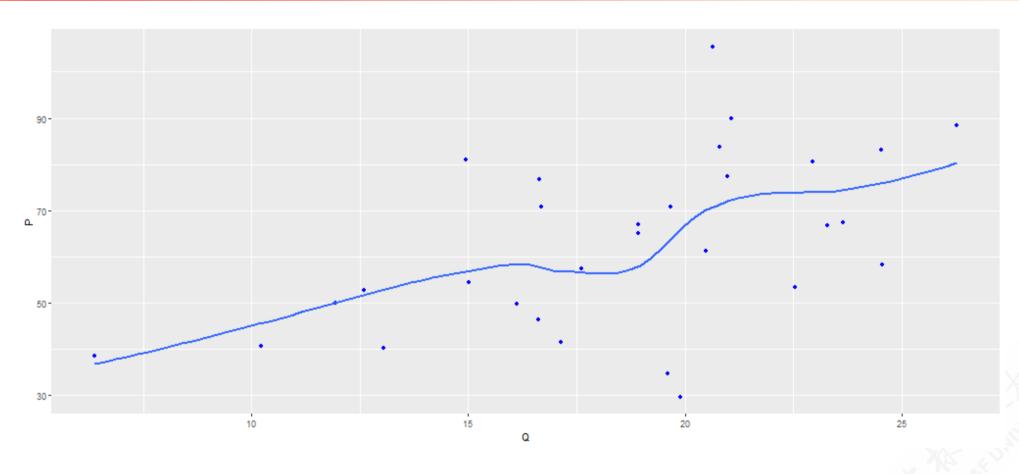
# Truffles example: the data set

| Truffles | data | set | (n = | 30) |
|----------|------|-----|------|-----|
|----------|------|-----|------|-----|

| id 🛊              | P •     | Q     | PS *  | DI 🛊       | PF *       |  |  |
|-------------------|---------|-------|-------|------------|------------|--|--|
| 1                 | 29.64   | 19.89 | 19.97 | 2.103      | 10.52      |  |  |
| 2                 | 40.23   | 13.04 | 18.04 | 2.043      | 19.67      |  |  |
| 3                 | 34.71   | 19.61 | 22.36 | 1.87       | 13.74      |  |  |
| 4                 | 41.43   | 17.13 | 20.87 | 1.525      | 17.95      |  |  |
| 5                 | 53.37   | 22.55 | 19.79 | 2.709      | 13.71      |  |  |
| 6                 | 38.52   | 6.37  | 15.98 | 2.489      | 24.95      |  |  |
| 7                 | 54.33   | 15.02 | 17.94 | 2.294      | 24.17      |  |  |
| 8                 | 40.56   | 10.22 | 17.09 | 2.196      | 23.61      |  |  |
| ng 1 to 8 of 30 e | entries |       |       | Previous 1 | 2 3 4 Next |  |  |



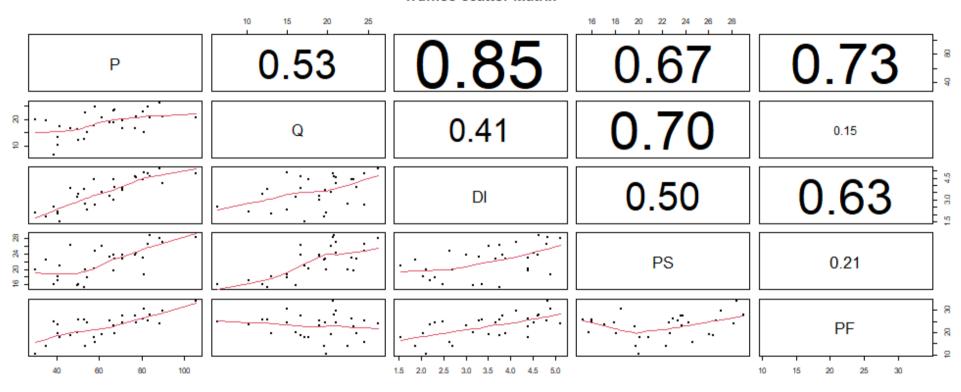
# Truffles example: the Scatter plot (P VS Q)





## Truffles example: the Scatter matrix

#### **Truffles Scatter Matrix**





## Truffles example: the simple linear regression

Let's start with the simplest linear regression model.

Generally, we use price (P) and output (Q) data to directly conduct simple linear regression modeling:

$$\left\{ egin{aligned} P &= \hat{eta}_1 + \hat{eta}_2 Q + e_1 & ext{ (simple P model)} \ Q &= \hat{eta}_1 + \hat{eta}_2 P + e_2 & ext{ (simple Q model)} \end{aligned} 
ight.$$



## Truffles example: the simple linear regression

As we all know, the linear regression of two variables is asymmetrical, so there is:

• the simple **Price** regression is:

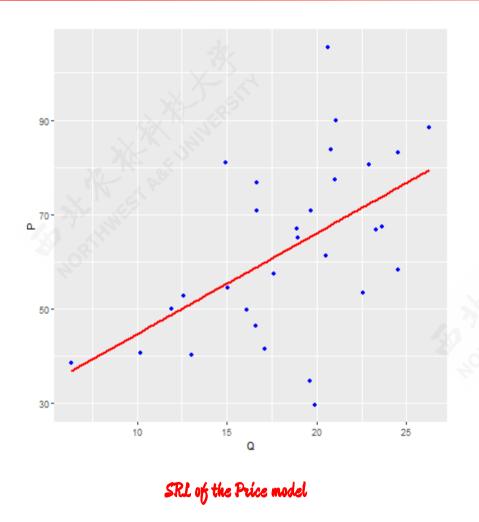
$$egin{aligned} \widehat{P} &=& +23.23 & +2.14Q \ ext{(t)} & (1.8748) & (3.2831) \ ext{(se)} & (12.3885) & (0.6518) \ ext{(fitness)} R^2 &= 0.2780; ar{R}^2 &= 0.2522 \ F^* &= 10.78; \; p = 0.0028 \end{aligned}$$

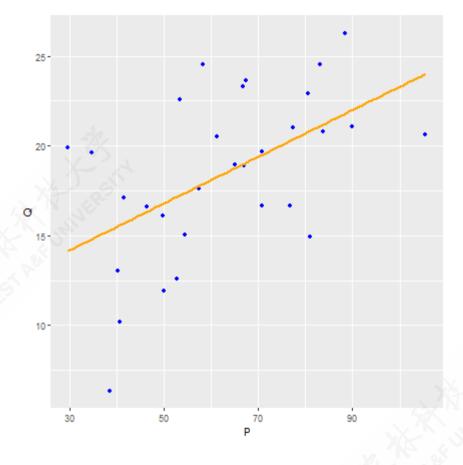
• the simple Quantity regression is:

$$egin{aligned} \widehat{Q} &=& +10.31 & +0.13P \ ( ext{t}) & (3.9866) & (3.2831) \ ( ext{se}) & (2.5863) & (0.0396) \ ( ext{fitness}) R^2 &= 0.2780; ar{R}^2 &= 0.2522 \ F^* &= 10.78; \; p = 0.0028 \end{aligned}$$



# Truffles example: the sample regression line (SRL)





SRL of the Quantity model



## Truffles example: the multi-variables regression model

Of course, we can also use more independent variables X to build the regression models:

$$\left\{ \begin{array}{l} P = \hat{\beta}_1 + \hat{\beta}_2 Q + \hat{\beta}_3 DI + \hat{\beta}_2 PS + e_1 & \text{(added P model)} \\ Q = \hat{\beta}_1 + \hat{\beta}_2 P + \hat{\beta}_2 PF + e_2 & \text{(added Q model)} \end{array} \right.$$



## Truffles example: the multi-variables regression model

• the estimation result of multi-vars **Price** regression model is:

$$egin{array}{lll} \widehat{P} = & -13.62 & +0.15Q & +12.36DI + 1.36PS \ (\mathrm{t}) & (-1.4987) & (0.3032) & (6.7701) & (2.2909) \ (\mathrm{se}) & (9.0872) & (0.4988) & (1.8254) & (0.5940) \ (\mathrm{fitness}) R^2 = 0.8013; \bar{R}^2 = 0.7784 \ F^* = 34.95; \; p = 0.0000 \end{array}$$

• the estimation result of multi-vars **Quantity** regression model is:

$$egin{array}{lll} \widehat{Q} =& +20.03 & +0.34P & -1.00PF \ (\mathrm{t}) & (16.3938) & (15.5436) & (-13.1028) \ (\mathrm{se}) & (1.2220) & (0.0217) & (0.0764) \ (\mathrm{fitness}) R^2 = 0.9019; \bar{R}^2 = 0.8946 \ F^* = 124.08; p = 0.0000 \end{array}$$

# 18.2 Notations and Definitions



## Structural SEM (1): algebraic expression A

**Structural equations**: System of equations that directly characterize economic structure or behavior.

The algebraic expression of structural SEM is:

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$



#### Structural SEM (1): Structural coefficients

**Structural coefficients**: Parameters in structural equation that represents an economic outcome or behavioral relationship, including:

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

- Endogenous structural coefficients:  $\gamma_{11}, \gamma_{21}, \cdots, \gamma_{m1}; \cdots; \gamma_{1m}, \gamma_{2m}, \cdots, \gamma_{mm}$
- Exogenous structural coefficients:  $\beta_{11}, \beta_{21}, \dots, \beta_{m1}; \dots; \beta_{1m}, \beta_{2m}, \dots, \beta_{mm};$



#### Structural SEM (1): Structural variables

- Endogenous variables: Variables determined by the model.
- **Predetermined variables**: Variables which values are not determined by the model in the **current** time period.

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

#### **Endogenous variables:**

• Such as:  $Y_{t1}; Y_{t2}; \cdots; Y_{tm}$ 

#### **Predetermined variables:**

• Such as: *X*...



#### Structural SEM (1): Predetermined variables

**Predetermined variables**: Variables which values are not determined by the model in the **current** time period, including:

- the exogenous variables
- the lagged endogenous variables.

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$



#### Structural SEM (1): Predetermined variables

- Exogenous variables: The variables not determined by the model, neither in the current period nor in the lagged period.
- Lagged endogenous variables: The lag variable of the endogenous variable in the current period.

#### current period exogenous:

 $\bullet$   $X_{t1}, X_{t2}, \cdots, X_{tk}$ .

#### lagged period exdogenous:

- ullet lagged from  $X_{t1}\colon X_{t-1,1}; X_{t-2,1}; \cdots; X_{t-(T-1),1}$
- ullet and lagged from  $X_{tk}$ :  $X_{t-1,k}; X_{t-2,k}; \cdots; X_{t-(T-1),k}$

• • • •

#### lagged endogenous:

- lagged from  $Y_{t1}$ :  $Y_{t-1,1}; Y_{t-2,1}; \cdots, Y_{t-(T-1),1}$
- and lagged from  $Y_{tm}$ :  $Y_{t-1,m}; Y_{t-2,m}; \cdots; Y_{t-(T-1),m}$
- . . .



#### Structural SEM (1): Predetermined coefficients

**Predetermined coefficients**: coefficients before predetermined variables.

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} & + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} & + \varepsilon_{t1} \\ Y_{t2} = & \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} & + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} & + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

Such as:

• all  $\beta$ ..



## Structural SEM (1): algebraic expression B

By simple transformation, the **algebraic expression** of SEM can also show as:

$$A: \left\{ \begin{array}{l} Y_{t1} = & + \gamma_{21}Y_{t2} + \cdots + \gamma_{m1}Y_{tm} + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \cdots + \beta_{k1}X_{tk} + \varepsilon_{t1} \\ Y_{t2} = \gamma_{12}Y_{t1} + & \cdots + \gamma_{m2}Y_{tm} + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \cdots + \beta_{k2}X_{tk} + \varepsilon_{t2} \\ \vdots & \vdots & \vdots & \vdots \\ Y_{tm} = \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \cdots & + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \cdots + \beta_{km}X_{tk} + \varepsilon_{tm} \\ \end{array} \right.$$

$$\Rightarrow B: \left\{ \begin{array}{l} \gamma_{11}Y_{t1} + \gamma_{21}Y_{t2} + \cdots + \gamma_{m-1,1}Y_{t,m-1} + \gamma_{m1}Y_{tm} + \beta_{11}X_{t1} + \beta_{21}X_{t2} + \cdots + \beta_{k1}X_{tk} = \varepsilon_{t1} \\ \gamma_{12}Y_{t1} + \gamma_{22}Y_{t2} + \cdots + \gamma_{m-1,1}Y_{t,m-1} + \gamma_{m2}Y_{tm} + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \cdots + \beta_{k2}X_{tk} = \varepsilon_{t2} \\ \vdots & \vdots & \vdots \\ \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \cdots + \gamma_{m-1,m}Y_{t,m-1} + \gamma_{mm}Y_{tm} + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \cdots + \beta_{km}X_{tk} = \varepsilon_{tm} \end{array} \right.$$



## Structural SEM (2): matrix expression

With the Matrix language, the **matrix expression** of SEM was noted as:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$



#### Structural SEM (2): matrix expression

For Simplicity, we can generized the **matrix expression** of SEM:

$$egin{array}{lll} oldsymbol{y_t'} oldsymbol{\Gamma} & +oldsymbol{x_t'} oldsymbol{B} & =oldsymbol{arepsilon_t'} \ (1*m)(m*m) & (1*k)(k*m) & (1*m) \end{array}$$

#### where:

- Bold upper letter and greek means a matrix
- Bold lower letter and greek means a column vector



## Structural SEM (2): Endogenous coefficients matrix

#### For the **Endogenous parameter matrix** $\Gamma$ :

- To ensure that each equation has a **dependent variable**, then the matrix  $\Gamma$  each column has at least one element of 1
- If matrix  $\Gamma$  is upper triangular matrix, then the SEM is a **recursive** model system.
- For the SEM solution to exist,  $\Gamma$  must be **nonsingular**.

$$oldsymbol{\Gamma} = egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots & \cdots \ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mm} \end{bmatrix} \ ext{if} \ \Rightarrow egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ 0 & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots & \cdots \ 0 & 0 & \cdots & \gamma_{mm} \end{bmatrix}$$

$$oldsymbol{\Gamma} = egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots & \cdots \ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mm} \end{bmatrix} egin{bmatrix} y_{1t} = & f_1\left(\mathbf{x}_t
ight) + arepsilon_{t1} \ y_{2t} = & f_2\left(y_{t1},\mathbf{x}_t
ight) + arepsilon_{t2} \ dots & dots \ y_{mt} = & f_m\left(y_{t1},y_{t2},\ldots,\mathbf{x}_t
ight) + arepsilon_{mt} \end{bmatrix}$$



## Structural SEM (2): Exdogenous coefficients matrix

#### The Exogenous coefficients matrix B:

$$m{B} = egin{bmatrix} eta_{11} & eta_{12} & \cdots & eta_{1m} \ eta_{21} & eta_{22} & \cdots & eta_{2m} \ \cdots & \cdots & \cdots & \cdots \ eta_{k1} & eta_{k2} & \cdots & eta_{km} \end{bmatrix}$$



## Reduced SEM (1): algebraic expression

Reduced equations: The equation expresses an endogenous variable with all the predetermined variables and the stochastic disturbances.

$$\begin{cases} Y_{t1} = +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \dots + \pi_{k1}X_{tk} + v_{t1} \\ Y_{t2} = +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \dots + \pi_{k2}X_{tk} + v_{t2} \\ \vdots & \vdots & \vdots \\ Y_{tm} = +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \dots + \pi_{km}X_{tk} + v_{tm} \end{cases}$$



#### Reduced SEM (1): Reduced coefficients and disturbance

- **Reduced coefficients**: parameters in the reduced SEM.
- **Reduced disturbance**: stochastic disturbance terms in the reduced SEM.

$$\left\{egin{array}{ll} Y_{t1} = & +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \cdots + \pi_{k1}X_{tk} & +v_{t1} \ Y_{t2} = & +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \cdots + \pi_{k2}X_{tk} & +v_{t2} \ dots & dots & dots \ Y_{tm} = & +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \cdots + \pi_{km}X_{tk} + v_{tm} \end{array}
ight.$$

#### Reduced coefficients:

- $\pi_{11}, \pi_{21}, \cdots, \pi_{k1}$
- $\bullet$   $\pi_{1m}, \pi_{2m}, \cdots, \pi_{km}$ .

#### Reduced disturbance:

$$ullet$$
  $v_1,v_2,\cdots,v_m$   $\circ$ 



#### Reduced SEM (2): matrix expression

$$\left\{egin{array}{ll} Y_{t1} = & +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \cdots + \pi_{k1}X_{tk} & +v_{t1} \ Y_{t2} = & +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \cdots + \pi_{k2}X_{tk} & +v_{t2} \ dots & dots & dots \ Y_{tm} = & +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \cdots + \pi_{km}X_{tk} + v_{tm} \end{array}
ight.$$

For this algebraic reduced SEM, we can note its matrix form as:



#### Reduced SEM (2): matrix expression

For simplicity, the matrix expression of reduced SEM can be noted further.

$$egin{array}{lll} oldsymbol{y}_t' & = oldsymbol{x}_t' oldsymbol{\Pi} & + oldsymbol{v}_t' \ (1*m) & (1*k)(k*m) & (1*m) \end{array}$$

• the reduced coefficients matrix is:

$$oldsymbol{\Pi} = egin{bmatrix} \pi_{11} & \pi_{12} & \cdots & \pi_{1m} \ \pi_{21} & \pi_{22} & \cdots & \pi_{2m} \ \cdots & \cdots & \cdots & \cdots \ \pi_{m1} & \pi_{m2} & \cdots & \pi_{mm} \end{bmatrix}$$

• the reduced disturbances vector is:

$$oldsymbol{v_t'} = \left[egin{array}{cccc} v_1 & v_2 & \cdots & v_m \end{array}
ight]_t$$



#### Structural VS Reduced SEM: the two systems

We can induce Reduced Equations from Structural Equations:

$$\begin{cases} Y_{t1} = & + \gamma_{21}Y_{t2} + \dots + \gamma_{m1}Y_{tm} + \beta_{11}X_{1t} + \beta_{21}X_{t2} + \dots + \beta_{k1}X_{tk} + \varepsilon_{t1} \\ Y_{t2} = \gamma_{12}Y_{t1} + & \dots + \gamma_{m2}Y_{tm} + \beta_{12}X_{t1} + \beta_{22}X_{t2} + \dots + \beta_{k2}X_{tk} + \varepsilon_{t2} \\ \vdots & \vdots & \vdots \\ Y_{tm} = & \gamma_{1m}Y_{t1} + \gamma_{2m}Y_{t2} + \dots + \beta_{1m}X_{t1} + \beta_{2m}X_{t2} + \dots + \beta_{km}X_{tk} + \varepsilon_{tm} \end{cases}$$

$$\Rightarrow \begin{cases} Y_{t1} = & +\pi_{11}X_{t1} + \pi_{21}X_{t2} + \dots + \pi_{k1}X_{tk} + v_{t1} \\ Y_{t2} = & +\pi_{12}X_{t1} + \pi_{22}X_{t2} + \dots + \pi_{k2}X_{tk} + v_{t2} \\ \vdots & \vdots & \vdots \\ Y_{tm} = & +\pi_{1m}X_{t1} + \pi_{2m}X_{t2} + \dots + \pi_{km}X_{tk} + v_{tm} \end{cases}$$



#### Structural VS Reduced SEM: coefficients

The Structural SEM:

$$oldsymbol{y_t'} oldsymbol{\Gamma} + oldsymbol{x_t'} oldsymbol{B} = oldsymbol{arepsilon_t'}$$

The Reduced SEM:

$$oldsymbol{y_t'} = oldsymbol{x_t'} oldsymbol{\Pi} + oldsymbol{v_t'}$$

• where:

$$egin{aligned} oldsymbol{\Pi} &= -oldsymbol{B}oldsymbol{\Gamma}^{-1} \ oldsymbol{v}_t' &= oldsymbol{arepsilon}_t'oldsymbol{\Gamma}^{-1} \end{aligned}$$

• and:

$$oldsymbol{\Gamma} = egin{bmatrix} \gamma_{11} & \gamma_{12} & \cdots & \gamma_{1m} \ \gamma_{21} & \gamma_{22} & \cdots & \gamma_{2m} \ \cdots & \cdots & \cdots & \cdots \ \gamma_{m1} & \gamma_{m2} & \cdots & \gamma_{mm} \end{bmatrix}$$



#### Structural VS Reduced SEM: Moments

Now we concern the first and second moments of the disturbance:

• first, let us assumed the moments of **structural disturbances** satisfy:

$$egin{aligned} \mathbf{E}[arepsilon_{\mathbf{t}}|\mathbf{x}_{\mathbf{t}}] &= \mathbf{0} \ \mathbf{E}[arepsilon_{\mathbf{t}}arepsilon_{t}'|\mathbf{x}_{\mathbf{t}}] &= \mathbf{\Sigma} \ E\left[oldsymbol{arepsilon}_{t}oldsymbol{arepsilon}_{s}|\mathbf{x}_{t},\mathbf{x}_{s}
ight] &= \mathbf{0}, \quad orall t,s \end{aligned}$$

• then, we can prove that the **reduced disturbances** satisfy:

$$egin{aligned} E\left[\mathbf{v}_t|\mathbf{x}_t
ight] &= \left(\mathbf{\Gamma}^{-1}
ight)'\mathbf{0} = \mathbf{0} \ E\left[\mathbf{v}_t\mathbf{v}_t'|\mathbf{x}_t
ight] &= \left(\mathbf{\Gamma}^{-1}
ight)'\mathbf{\Sigma}\mathbf{\Gamma}^{-1} = \mathbf{\Omega} \ \end{aligned} \ ext{where: } \mathbf{\Sigma} &= \mathbf{\Gamma}'\mathbf{\Omega}\mathbf{\Gamma} \end{aligned}$$



### Structural VS Reduced SEM: useful expression\*

In a sample of data, each joint observation will be one row in a data matrix ( with T observations):

$$\left[egin{array}{cccc} \mathbf{Y} & \mathbf{X} & \mathbf{E} 
ight] = \left[egin{array}{cccc} \mathbf{y}_1' & \mathbf{x}_1' & oldsymbol{arepsilon}_1' \ \mathbf{y}_2' & \mathbf{x}_2' & oldsymbol{arepsilon}_2' \ dots & & & \ \mathbf{y}_T' & \mathbf{x}_T' & oldsymbol{arepsilon}_T' \end{array}
ight]$$

then the structural SEM is:

$$\mathbf{Y}\mathbf{\Gamma} + \mathbf{X}\mathbf{B} = \mathbf{E}$$

the first and second moment of structural disturbances is:

$$E[\mathbf{E}|\mathbf{X}] = \mathbf{0}$$
 $E\left[(1/T)\mathbf{E}'\mathbf{E}|\mathbf{X}\right] = \mathbf{\Sigma}$ 



### Structural VS Reduced SEM: useful expression\*

Assume that:

$$(1/T)\mathbf{X}'\mathbf{X} \to \mathbf{Q}$$
 (a finite positive definite matrix)  
 $(1/T)\mathbf{X}'\mathbf{E} \to \mathbf{0}$ 

then the reduced SEM can be noted as:

$$\mathbf{Y} = \mathbf{X}\mathbf{\Pi} + \mathbf{V} \qquad \leftarrow \mathbf{V} = \mathbf{E}\mathbf{\Gamma}^{-1}$$

And we may have following useful results:

$$rac{1}{T}egin{bmatrix} \mathbf{Y}' \ \mathbf{X}' \ \mathbf{V}' \end{bmatrix} egin{bmatrix} \mathbf{Y} & \mathbf{X} & \mathbf{V} \end{bmatrix} &
ightarrow & egin{bmatrix} \mathbf{I}'\mathbf{Q}\mathbf{I} + \mathbf{\Omega} & \mathbf{I}\mathbf{I}'\mathbf{Q} & \mathbf{\Omega} \ \mathbf{Q}\mathbf{I} & \mathbf{Q} & \mathbf{0}' \ \mathbf{\Omega} & \mathbf{0} & \mathbf{\Omega} \end{bmatrix}$$



#### Case 1: Keynesian income model (structural SEM)

The Keynesian model of income determination (structural SEM):

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + arepsilon_t & ext{ (consumption function)} \ Y_t = C_t + I_t & ext{ (income equity)} \end{array}
ight.$$

So the structural SEM contains:

#### 2 endogenous variables:

•  $c_t; Y_t$ 

#### 1 predetermined variables:

- 1 exogenous variables:  $I_t$
- 0 lagged endogenous variable.

**Exercise**: can you get the reduced SEM from this structural SEM?



#### Case 1: Keynesian income model (reduced SEM)

We can get the reduced SEM from the former structural SEM and denoted (the right):

$$\left\{egin{array}{l} Y_t = rac{eta_0}{1-eta_1} + rac{1}{1-eta_1} I_t + rac{arepsilon_t}{1-eta_1} \ C_t = rac{eta_0}{1-eta_1} + rac{eta_1}{1-eta_1} I_t + rac{arepsilon_t}{1-eta_1} \ \end{array}
ight. \left\{egin{array}{l} Y_t = \pi_{11} + \pi_{21} I_t + v_{t1} \ C_t = \pi_{12} + \pi_{22} I_t + v_{t2} \ \end{array}
ight.$$

where:

$$\left\{egin{array}{l} \pi_{11}=rac{eta_0}{1-eta_1}; & \pi_{21}=rac{eta_0}{1-eta_1}; & v_{t1}=rac{arepsilon_t}{1-eta_1}; \ \pi_{12}=rac{1}{1-eta_1}; & \pi_{22}=rac{eta_1}{1-eta_1}; & v_{t2}=rac{arepsilon_t}{1-eta_1}; \end{array}
ight.$$

there are 2 structural coefficients  $\beta_0$ ;  $\beta_1$  totally; and 4 reduced coefficients  $\pi_{11}, \pi_{21}; \pi_{12}, \pi_{22}$  (There are actually three only!)



#### Case 2: Macroeconomic Model (structural SEM)

#### Consider the **Small Macroeconomic Model** (Structural SEM):

$$\left\{egin{aligned} ext{consumption: } c_t &= lpha_0 + lpha_1 y_t + lpha_2 c_{t-1} + arepsilon_{t,c} \ ext{investment: } i_t &= eta_0 + eta_1 r_t + eta_2 \left( y_t - y_{t-1} 
ight) + arepsilon_{t,j} \ ext{demand: } y_t &= c_t + i_t + g_t \end{aligned}
ight.$$

where:  $c_t$  = consumption;  $y_t$  = output;  $i_t$  = investment;  $r_t$  = rate;  $g_t$  = government expenditure.

3 endogenous variables:  $c_t$ ;  $i_t$ ;  $Y_t$ 

totally 6 **strutural coefficients**:

4 predetermined variables:

 $\alpha_0, \alpha_1, \alpha_2; \beta_0, \beta_1, \beta_2;$ 

- 2 exogenous variables:  $r_t; g_t$ .
- 2 lagged endogenous variables:

$$y_{t-1}; c_{t-1}$$



#### Case 2: Macroeconomic Model (reduced SEM)

We can get the reduced SEM from the former structural SEM: (HOW TO??)

$$\begin{cases} c_{t} = & \left[\alpha_{0}(1-\beta_{2}) + \beta_{0}\alpha_{1} + \alpha_{1}\beta_{1}r_{t} + \alpha_{1}g_{t} + \alpha_{2}\left(1-\beta_{2}\right)c_{t-1} - \alpha_{1}\beta_{2}y_{t-1} \right. \\ & \left. + (1-\beta_{2})\,\varepsilon_{t,c} + \alpha_{1}\varepsilon_{t,j}\right]/\Lambda \\ i_{t} = & \left[\alpha_{0}\beta_{2} + \beta_{0}\left(1-\alpha_{1}\right) + \beta_{1}\left(1-\alpha_{1}\right)r_{t} + \beta_{2}g_{t} + \alpha_{2}\beta_{2}c_{t-1} - \beta_{2}\left(1-\alpha_{1}\right)y_{t-1} \right. \\ & \left. + \beta_{2}\varepsilon_{t,c} + (1-\alpha_{1})\,\varepsilon_{t,j}\right]/\Lambda \\ y_{t} = & \left[\alpha_{0} + \beta_{0} + \beta_{1}r_{t} + g_{t} + \alpha_{2}c_{t-1} - \beta_{2}y_{t-1} + \varepsilon_{t,c} + \varepsilon_{t,j}\right]/\Lambda \end{cases}$$

where:  $\Lambda = 1 - \alpha_1 - \beta_2$ . For simplicity, denote the **reduced SEM** as:

$$\left\{egin{array}{l} c_t = \pi_{11} + \pi_{21} r_t + \pi_{31} g_t + \pi_{41} c_{t-1} + \pi_{51} y_{t-1} + v_{t1} \ i_t = \pi_{12} + \pi_{22} r_t + \pi_{32} g_t + \pi_{42} c_{t-1} + \pi_{52} y_{t-1} + v_{t2} \ i_t = \pi_{13} + \pi_{23} r_t + \pi_{33} g_t + \pi_{43} c_{t-1} + \pi_{53} y_{t-1} + v_{t3} \end{array}
ight.$$

So we have 15 **reduced coefficients** totally!



## Case 2: Macroeconomic Model (thinking)

#### Thinking:

- What are the purposes of structural SEM and reduced SEM respectively?
- Note the consumption function (in structural SEM): the rate  $i_t$  does not impact the consumption  $c_t$ !
  - It will be obvious from the reduced SEM that  $\frac{\Delta c_t}{\Delta r_t} = \frac{\alpha_1 \beta_1}{\Lambda}$
- Note the consumption function (in structural SEM): What are the reasons for the impact of income  $y_t$  on consumption  $c_t$ ?
  - It's also easy to get the answer by transformation:

$$rac{\Delta c_t}{\Delta y_t} = rac{\Delta c_t/\Delta r_t}{\Delta y_t/\Delta r_t} = rac{lpha_1eta_1/\Lambda}{eta_1/\Lambda} = lpha_1$$



#### Case 2: Macroeconomic Model (the relationship)

According to the relationship between Structural SEM and Reduced SEM:

$$oldsymbol{y_t'} = -oldsymbol{x_t'}oldsymbol{\Pi} + oldsymbol{v_t'} = -oldsymbol{x_t'}oldsymbol{B}oldsymbol{\Gamma^{-1}} + oldsymbol{arepsilon_t'}oldsymbol{\Gamma^{-1}}$$

Then, the following matrixes can be easily obtained:

$$\mathbf{y}' = [c \ i \ y] \ \mathbf{x}' = [1 \ r \ g \ c_{-1} \ y_{-1}]$$
  $\Gamma = \begin{bmatrix} 1 & 0 & -1 \ 0 & 1 & -1 \ -\alpha_1 & -\beta_2 & 1 \end{bmatrix}$   $\Gamma = \begin{bmatrix} 1 & 0 & -1 \ 0 & 1 & -1 \ -\alpha_1 & -\beta_2 & 1 \end{bmatrix}$   $\Gamma^{-1} = \frac{1}{\Lambda} \begin{bmatrix} 1 - \beta_2 & \beta_2 & 1 \ \alpha_1 & 1 - \alpha_1 & 1 \ \alpha_1 & \beta_2 & 1 \end{bmatrix}$ 

$$egin{aligned} \Gamma &= egin{bmatrix} 1 & 0 & -1 \ 0 & 1 & -1 \ -lpha_1 & -eta_2 & 1 \end{bmatrix} \ m{\Gamma}^{-1} &= rac{1}{\Lambda} egin{bmatrix} 1 - eta_2 & eta_2 & 1 \ lpha_1 & 1 - lpha_1 & 1 \ lpha_1 & eta_2 & 1 \end{bmatrix} \end{aligned}$$



#### Case 2: Macroeconomic Model (calculations)

We can get the same answers: (It's so easy!)

$$oldsymbol{\Pi} = -oldsymbol{B}oldsymbol{\Gamma}^{-1} = rac{1}{\Lambda}egin{bmatrix} lpha_0 \left(1-eta_2
ight) + eta_0 lpha_1 & lpha_0 eta_2 + eta_0 \left(1-lpha_1
ight) & lpha_0 + eta_0 \ lpha_1 eta_1 & eta_1 \left(1-lpha_1
ight) & eta_1 \ lpha_2 \left(1-eta_2
ight) & lpha_2 eta_2 & 1 \ lpha_2 \left(1-eta_2
ight) & lpha_2 eta_2 & lpha_2 \ -eta_2 lpha_1 & -eta_2 \left(1-lpha_1
ight) & -eta_2 \end{array} 
ight]$$

$$oldsymbol{\Pi'} = rac{1}{\Lambda} egin{bmatrix} lpha_0 \left(1 - eta_2
ight) + eta_0 lpha_1 & lpha_1 eta_1 & lpha_1 & lpha_2 \left(1 - eta_2
ight) & -eta_2 lpha_1 \ lpha_0 eta_2 + eta_0 \left(1 - lpha_1
ight) & eta_1 \left(1 - lpha_1
ight) & eta_2 & lpha_2 eta_2 & -eta_2 \left(1 - lpha_1
ight) \ lpha_0 + eta_0 & eta_1 & 1 & lpha_2 & -eta_2 \end{bmatrix}$$

• Where:

$$\Lambda = 1 - \alpha_1 - \beta_2$$

• Remeber that:

$$\mathbf{x}' = [egin{array}{cccc} 1 & r & g & c_{-1} & y_{-1} \end{bmatrix}$$



### Supplement: inverse matrix solution and procedure\*

Use the elementary row operation (Gauss-Jordan) to find the inverse matrix:



- 1. Construct augmented matrix
- 2. Transform the augmented matrix for many times until the goal is achieved.

Use cofactor, algebraic cofactor and adjoint matrix to get the inverse matrix:



- 1. Calculate cofactor matrix and algebraic cofactor matrix;
- 2. Calculate adjoint matrix: it is the transpose of the cofactor matrix;
- 3. Calculate the **determinant** of original matrix : each element of **top row** in the original matrix is multiplied by its corresponding **top row** element in the "cofactor matrix";
- 4. Calculated the inverse matrix: 1/ determinant × adjoint matrix

18.3 Is the OLS Method Still applicable?



#### Endogenous variable problem

Consider Keynes's model of income determination, We will be able to show that  $Y_t$  and  $u_t$  will be correlated, thus violating the CLRM **A2** assumption.

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(Income Identity)} \end{array}
ight.$$

By transforming the above structural equation, we obtained:

$$Y_t = eta_0 + eta_1 Y_t + I_t + u_t$$

$$Y_t = \frac{eta_0}{1 - eta_1} + \frac{1}{1 - eta_1} I_t + \frac{1}{1 - eta_1} u_t \qquad ext{(eq1: Reduced equation)}$$

$$E(Y_t) = \frac{eta_0}{1 - eta_1} + \frac{1}{1 - eta_1} I_t \qquad ext{(eq2: Take the expectation for both sides)}$$



#### Endogenous variable problem

#### Further more:

$$egin{aligned} Y_t - E(Y_t) &= rac{u_t}{1-eta_1} & ( ext{eq } 1 - ext{eq } 2) \ u_t - E(u_t) &= u_t & ( ext{eq } 3 ext{: Expectation is equal to } 0) \ cov(Y_t, u_t) &= E([Y_t - E(Y_t)][u_t - E(u_t)]) & ( ext{eq } 4 ext{: Covariance definition}) \ &= rac{E(u_t^2)}{1-eta_1} & ( ext{eq } 5 ext{: Variance definition}) \ &= rac{\sigma^2}{1-eta_1} 
eq 0 & ( ext{eq } 6 ext{: The variance is not } 0) \end{aligned}$$

- Therefore, the consumption equation of the Keynesian model will not satisfy the CLRM A2 assumption.
- Thus, OLS method cannot be used to obtain **Best linear unbiased estimator** (BLUE) for consumption equation.



#### The OLS estimator of the coefficient is biased

Furthermore, the OLS estimator is biased to its true  $\beta_1$ , which means  $E(\hat{\beta}_1) \neq \beta_1$ . The proof show as below.

$$\left\{egin{array}{ll} C_t = eta_0 + eta_1 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ext{(Income Identity)} \end{array}
ight.$$

$$\hat{\beta}_1 = \frac{\sum c_t y_t}{\sum y_t^2} = \frac{\sum C_t y_t}{\sum y_t^2} = \frac{\sum [(\beta_0 + \beta_1 Y_t + u_t) y_t]}{\sum y_t^2} = \beta_1 + \frac{\sum u_t y_t}{\sum y_t^2}$$
 (eq 1)

Take the expectation of both sides in eq 1, so:

$$E(\hat{eta}_1) = eta_1 + E\left(rac{\sum u_t y_t}{\sum y_t^2}
ight)$$

Question: is the expactation  $E\left(\frac{\sum u_t y_t}{\sum y_t^2}\right)$  equal to zero?



#### Supplement: Proof 1/2

$$\frac{\sum c_t y_t}{\sum y_t^2} = \frac{\sum (C_t - \bar{C})(Y_t - \bar{Y})}{\sum y_t^2} = \frac{\sum (C_t - \bar{C})y_t}{\sum y_t^2}$$

$$= \frac{\sum C_t y_t - \sum \bar{C}y_t}{\sum y_t^2} = \frac{\sum C_t y_t - \sum \bar{C}(Y_t - \bar{Y})}{\sum y_t^2}$$

$$= \frac{\sum C_t y_t - \bar{C} \sum Y_t - \sum \bar{C}\bar{Y}}{\sum y_t^2} = \frac{\sum C_t y_t - \bar{C} \sum Y_t - n\bar{C}\bar{Y}}{\sum y_t^2} = \frac{\sum C_t y_t - \bar{C} \sum Y_t - n\bar{C}\bar{Y}}{\sum y_t^2}$$

$$\hat{\beta}_1 = \frac{\sum (\beta_0 + \beta_1 Y_t + u_t) y_t}{\sum y_t^2} = \frac{\sum \beta_0 y_t + \sum \beta_1 Y_t y_t + \sum u_t y_t}{\sum y_t^2}$$

$$= \frac{\beta_1 \sum (y_t + \bar{Y})y_t + \sum u_t y_t}{\sum y_t^2} = \beta_1 + \frac{\sum y_t u_t}{\sum y_t^2}$$

$$\Leftarrow \sum y_t = 0; \qquad \frac{\sum Y_t y_t}{y_t^2} = 1$$



### Supplement: Proof 2/2

Conduct the limit to probability:

$$egin{aligned} ext{plim} ig( \hat{eta}_1 ig) &= ext{plim} (eta_1) + ext{plim} igg( rac{\sum y_t u_t}{\sum y_t^2} igg) \ &= ext{plim} (eta_1) + ext{plim} igg( rac{\sum y_t u_t/n}{\sum y_t^2/n} igg) = eta_1 + rac{ ext{plim} (\sum y_t u_t/n)}{ ext{plim} ig( \sum y_t^2/n ig)} \end{aligned}$$

And we've shown that:

$$cov(Y_t, u_t) = E([Y_t - E(Y_t)][u_t - E(u_t)]) = rac{E(u_t^2)}{1 - eta_1} = rac{\sigma^2}{1 - eta_1} 
eq 0$$

Therefore we finaly prove: 
$$E\left(\frac{\sum u_t y_t}{\sum y_t^2}\right) 
eq 0$$



#### Simulation: artificially population

Here, we construct an artificially controlled population for our Keynes's SEM model.

$$egin{cases} C_t = eta_0 + eta_1 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ( ext{Income Identity}) \ \end{pmatrix} \ egin{cases} C_t = 2 + 0.8 Y_t + u_t & (0 < eta_1 < 1) & ext{(consumption function)} \ Y_t = C_t + I_t & ( ext{Income Identity}) \end{cases}$$

The artificially controlled population is set to:

• 
$$\beta_0 = 2, \beta_1 = 0.8, I_t \leftarrow \text{given values}$$

$$ullet$$
  $E(u_t)=0, var(u_t)=\sigma^2=0.04$ 

$$ullet$$
  $E(u_tu_{t+j})=0, j
eq 0$ 

• 
$$cov(u_t, I_t) = 0$$



#### Simulation: the data sets

The simulation data under given conditions are:

| Y                           | C       | <b>†</b> I <b>†</b> | u \$                |
|-----------------------------|---------|---------------------|---------------------|
| 18.1570                     | 16.1570 | 2                   | -0.3686             |
| 19.5998                     | 17.5998 | 2                   | -0.0800             |
| 21.9347                     | 19.7347 | 2.2                 | 0.1869              |
| 21.5514                     | 19.3514 | 2.2                 | 0.1103              |
| 21.8843                     | 19.4843 | 2.4                 | -0.0231             |
| 22.4265                     | 20.0265 | 2.4                 | 0.0853              |
| 25.4094                     | 22.8094 | 2.6                 | 0.4819              |
| 22.6952                     | 20.0952 | 2.6                 | -0.0610             |
| howing 1 to 8 of 20 entries |         |                     | Previous 1 2 3 Next |



#### Simulation: manual calculation

According to the above formula, the regression coefficient can be calculated as follows:

Easy to calculate:  $\sum u_t y_t = 3.8000$ 

And:  $\sum y_t^2 = 184.0000$ 

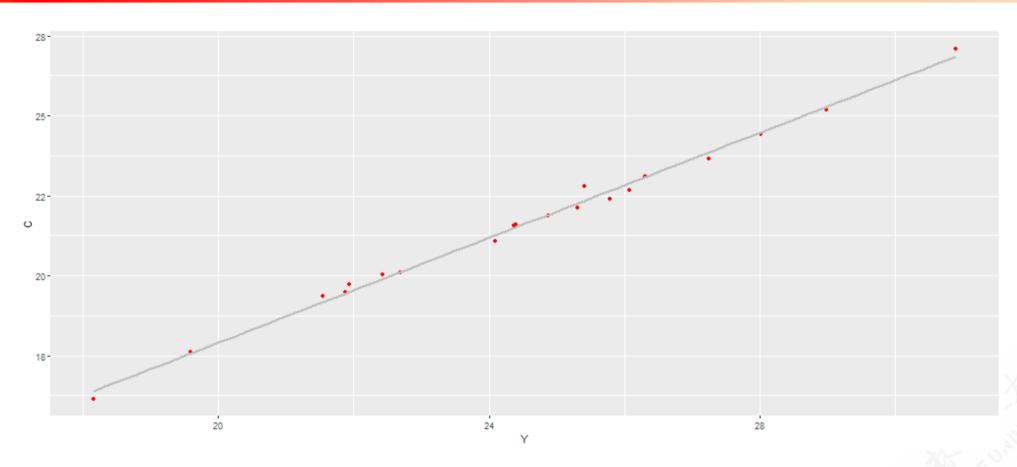
And:  $\frac{\sum u_t y_t}{\sum y_t^2} = 0.0207$ 

Hence:  $\hat{\beta}_1 = \beta_1 + \frac{\sum u_t y_t}{\sum y_t^2} = 0.8 + 0.0207 = 0.8207$ 

This also means that  $\hat{\beta_1}$  is different from  $\beta_1 = 0.8$ , and the difference is 0.0207.



# Simulation: scatter plots





### Simulation: regression report 1

Next, we used the simulated data for R analysis to obtain the original OLS report.

```
Call:
lm(formula = mod_monte$mod.C, data = monte)
Residuals:
   Min
       10 Median 30
                                 Max
-0.2700 -0.1586 -0.0013 0.0927 0.4631
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4940 0.3541 4.22 0.00052 ***
       0.8207 0.0143 57.21 < 2e-16 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2 on 18 degrees of freedom
Multiple R-squared: 0.995, Adjusted R-squared: 0.994
F-statistic: 3.27e+03 on 1 and 18 DF, p-value: <2e-16
```



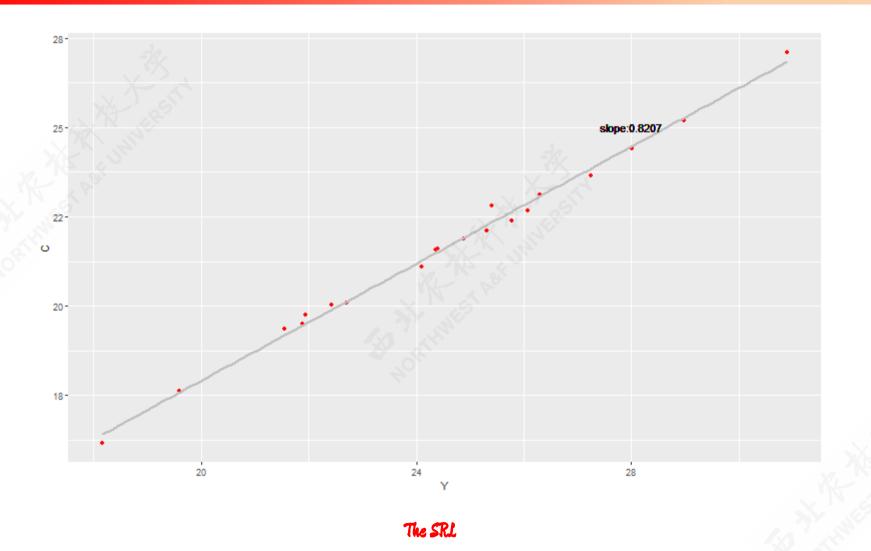
# Simulation: regression report 2

The tidy report of OLS estimation shows below.

$$egin{array}{lll} \widehat{C} = & +1.49 & +0.82Y \ (\mathrm{t}) & (4.2188) & (57.2090) \ (\mathrm{se}) & (0.3541) & (0.0143) \ (\mathrm{fitness})n = 20; & R^2 = 0.9945; ar{R^2} = 0.9942 \ F^* = 3272.87; p = 0.0000 \ \end{array}$$



# Simulation: sample regression line (SRL)





#### Conclusions and points

So let's summarize this chapter.

- Compared with the single-equation model, the SEM involves more than one dependent or endogenous variable. So there must be as many equations as endogenous variables.
- SEM always show that the endogenous variables are correlated with stochastic terms in other equations.
- Classical OLS may not be appropriate because the estimators are inconsistent.

# End Of This Chapter

