# Part 2: Simultaneous Equation Models (SEM) 

Chapter 17. Endogeneity and Instrumental Variables
Chapter 18. Why Should We Concern SEM ?
Chapter 19. What is the Identification Problem?
Chapter 20. How to Estimate SEM ?

## Chapter 20. How to Estimate SEM ?

20.1 Approaches to Estimation
20.2 General least squares (OLS)
20.3 Indirect least squares (ILS)
20.4 Two-stage least square method (2SLS)
20.5 Truffle case
20.6 Cod case

### 20.1 Approaches to Estimation

## Approaches to Estimation

In order to estimate the structural SEM, two approaches can be adopted:

- Single equation method, also known as limited information methods.
estimate each equation in SEM one by one, considering only the constraints in that equation
- System method, also known as full information method
estimate all the equations in the model simultaneously, taking into account all the constraints in the SEM


## Approaches to Estimation

Instrumental variables are often used to estimate simultaneous equation problems, mainly including three IV techniques for System method :

- Three-stage least squares (3SLS): Applicable in a few cases
- Generalized moment method( GMM): It is commonly used for dynamic model problems
- Full information maximum likelihood( FIML): It has much theoretical value and it brings no advantage over 3SLS, but is much more complicated to compute.


## Approaches to Estimation

Consider the following SEM:

$$
\left\{\begin{array}{ccc}
Y_{t 1}-\gamma_{21} Y_{t 2}-\gamma_{31} Y_{t 3} & -\beta_{01}-\beta_{11} X_{t 1} & =u_{t 1} \\
Y_{t 2}-\gamma_{32} Y_{3 t} & -\beta_{02}-\beta_{12} X_{1 t}-\beta_{22} X_{2 t} & =u_{t 2} \\
-\gamma_{13} Y_{t 1}+Y_{t 3} & -\beta_{03}-\beta_{13} X_{1 t}-\beta_{23} X_{2 t} & =u_{t 3} \\
-\gamma_{14} Y_{t 1}-\gamma_{24} Y_{t 2} & +Y_{t 4}-\beta_{04} & =\beta_{34} X_{t 3}
\end{array}=u_{t 4}=\right.
$$

- If you focus only on estimating the third equation, we can use the single equation method, which the variables $Y_{2}, Y_{4}, X_{3}$ were excluded from the estimation.
- If you want to estimate all four equations simultaneously, you should use the system method, and it will take into account all the constraints on multiple equations in the system.


## Approaches to Estimation

In order to use all information of SEM, it is most desirable to apply system method, such as full information maximum likelihood (FIML).

In practice, however, systems method are not commonly used for the following main reasons:

1. The computational burden is too great.
2. Systematic methods such as FIML often bring highly nonlinearity on parameters, which are difficult to determine and caculate.
3. If there is one or more specification error in SEM (eg. an incorrect functional form or missing variables), the error will be passed to the remaining equations. As a result, the system method becomes very sensitive to the specification errors.

### 20.2 Least squares approach (LS)

## OLS Approarch with recursive model

Recursive model : also known as the triangle model or causality model.
The simultaneous disturbance terms in different equations are unrelated, and each equation exhibits a one-way causal dependence.

Consider the following structural SEM:

$$
\begin{cases}Y_{t 1}= & +\beta_{01}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2}+u_{t 1} \\ Y_{t 2}=+\gamma_{12} Y_{1 t} & +\beta_{02}+\beta_{12} X_{t 1}+\beta_{22} X_{t 2}+u_{t 2} \\ Y_{t 3}=+\gamma_{13} Y_{t 1}+\gamma_{23} Y_{t 2}+\beta_{03}+\beta_{13} X_{t 1}+\beta_{23} X_{t 2}+u_{t 3}\end{cases}
$$

## OLS Approarch with recursive model

$$
\begin{cases}Y_{t 1}= & +\beta_{01}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2}+u_{t 1} \\ Y_{t 2}=+\gamma_{12} Y_{1 t} & +\beta_{02}+\beta_{12} X_{t 1}+\beta_{22} X_{t 2}+u_{t 2} \\ Y_{t 3}=+\gamma_{13} Y_{t 1}+\gamma_{23} Y_{t 2}+\beta_{03}+\beta_{13} X_{t 1}+\beta_{23} X_{t 2}+u_{t 3}\end{cases}
$$

It is easy to find that the contemporaneous disturbance terms in different equations are irrelevant (namely zero contemporaneous correlation) :

$$
\operatorname{cov}\left(u_{t 1}, u_{t 2}\right)=\operatorname{cov}\left(u_{t 1}, u_{t 3}\right)=\operatorname{cov}\left(u_{t 2}, u_{t 3}\right)=0
$$

- Since the first equation' right-hand side only contains exogenous variables, and are not correlated with disturbance terms, so this equation satisfies the CLRM and OLS can be applied directly to it.
- because $\operatorname{cov}\left(u_{t 1}, u_{t 2}\right)=0$, and $\operatorname{cov}\left(Y_{t 1}, u_{t 2}\right)=0$. Thus OLS can be applied directly to it.
- because $\operatorname{cov}\left(u_{t 1}, u_{t 3}\right)=0$, and $\operatorname{cov}\left(Y_{t 1}, u_{t 3}\right)=0$. Also $\operatorname{cov}\left(u_{t 1}, u_{t 3}\right)=0$, and $\operatorname{cov}\left(Y_{t 2}, u_{t 3}\right)=0$. Thus OLS can be applied directly to it.


## OLS Approarch with recursive model

We can also visualize it graphically:


## OLS Approarch with recursive model

Let's look at the wage-price model:

$$
\left\{\begin{aligned}
P_{t} & =\beta_{0}+\beta_{1} U N_{t}+\beta_{2} R_{t}+\beta_{3} M_{t}+u_{t 2} & & \text { (price equation) } \\
W_{t} & =\alpha_{0}+\alpha_{1} U N_{t}+\alpha_{2} P_{t}+u_{t 1} & & \text { (wage equation) }
\end{aligned}\right.
$$

Where:

- W, the money wage rate;
- UN, unemployment, \%;
- P, price rate;
- R, the cost of capital rate;
- $M$, import price change rate of raw materials.


### 20.3 Indirect least squares (ILS)

## ILS approach with Just Identification model

For a just or exactly identified structural equation, the method of obtaining the estimates of the structural coefficients from the OLS estimates of the reduced-form coefficients is known as the method of Indirect Least Squares (ILS), and the estimates thus obtained are known as the indirect least squares estimates.

ILS involves the following three steps:

- Step 1. We first obtain the reduced-form SEM.
- Step 2. We apply OLS to the reduced-form SEM individually.
- Step 3. We obtain estimates of the original structural coefficients from the estimated reduced-form coefficients obtained in Step 2.

If an equation is exactly identified, there is one-to-one mapping between the structural and reduced coefficients.

## Case demo: US crop supply and demand

The variables in the US crop supply and demand case are illustrated below

## variables in the model

| vars | label | note |
| :---: | :---: | :---: |
| Q | Crop yield index | $(1996=100)$ |
| P | Agricultural products purchasing prices index | $(1990-1992=100)$ |
| X | Capital personal consumption expenditure | (In 2007 dollars) |

## Case demo: data set

The data for US crop supply and demand case show here:

| sample data ( $n=30$ ) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year | * | Q |  | P |  |  |  | X |  |
| 1975 |  | 66 |  | 88 |  |  |  | 4789 |  |
| 1976 |  | 67 |  | 87 |  |  |  | 5282 |  |
| 1977 |  | 71 |  | 83 |  |  |  | 5804 |  |
| 1978 |  | 73 |  | 89 |  |  |  | 6417 |  |
| 1979 |  | 78 |  | 98 |  |  |  | 7073 |  |
| 1980 |  | 75 |  | 107 |  |  |  | 7716 |  |
| 1981 |  | 81 |  | 111 |  |  |  | 8439 |  |
| entries |  |  |  |  | vious | 1 | 2 | 34 | Next |

## Case demo: structural SEM

So we can construct the following structural SEM:

$$
\left\{\begin{array}{lrr}
Q=\alpha_{0}+\alpha_{1} P_{t}+\alpha_{2} X_{t}+u_{t 1} & \left(\alpha_{1}<0, \alpha_{2}>0\right) & \text { (demand function) } \\
Q=\beta_{0}+\beta_{1} P_{t}+u_{t 2} & \left(\beta_{1}>0\right) & \text { (supply function) }
\end{array}\right.
$$

where:

- $Q=$ Crop yield index;
- $P=$ Agricultural products purchasing prices index;
- $X=$ Capital personal consumption expenditure.


## Case demo: reduced SEM

Thus we can obtain the reduced SEM:

$$
\left\{\begin{aligned}
P_{t} & =\pi_{11}+\pi_{21} X_{t}+w_{t} \\
Q_{t} & =\pi_{12}+\pi_{22} X_{t}+v_{t}
\end{aligned}\right.
$$

and the relationship between structural and reduced coefficients is:

$$
\left\{\begin{aligned}
\pi_{11} & =\frac{\beta_{0}-\alpha_{0}}{\alpha_{1}-\beta_{1}} \\
\pi_{21} & =-\frac{\alpha_{2}}{\alpha_{1}-\beta_{1}} \\
w_{t} & =\frac{u_{2 t}-u_{t 1}}{\alpha_{1}-\beta_{1}}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\pi_{12} & =\frac{\alpha_{1} \beta_{0}-\alpha_{0} \beta_{1}}{\alpha_{1}-\beta_{1}} \\
\pi_{22} & =-\frac{\alpha_{2} \beta_{1}}{\alpha_{1}-\beta_{1}} \\
v_{t} & =\frac{\alpha_{1} u_{t 2}-\beta_{1} u_{1 t}}{\alpha_{1}-\beta_{1}}
\end{aligned}\right.
$$

## Case demo: reduced coefficients

For the above reduced SEM, we can use OLS method to obtain the estimated coefficients:

$$
\begin{cases}\widehat{\pi}_{21}=\frac{\sum p_{t} x_{t}}{\sum x_{t}^{2}} & \text { (slope of the reduced price eq) } \\ \widehat{\pi}_{11}=\bar{P}-\widehat{\pi}_{1} \cdot \bar{X} & \text { (intercept of the reduced price eq) } \\ \widehat{\pi}_{22}=\frac{\sum q_{t} x_{t}}{\sum x_{t}^{2}} & \text { (slope of the reduced quantaty eq) } \\ \widehat{\pi}_{12}=\bar{Q}-\widehat{\pi}_{3} \cdot \bar{X} & \text { (intercept of the reduced quantaty eq) }\end{cases}
$$

## Case demo: structural coefficients

Because we already know that the supply equation in the structural SEM is Just identification (please review the order and rank conditions), hence the structural coefficients of the supply equation can be calculated uniquely with the reduced coefficients.

$$
\left\{\begin{array}{l}
\beta_{0}=\pi_{12}+\beta_{1} \pi_{11} \\
\beta_{1}=\frac{\pi_{22}}{\pi_{21}}
\end{array}\right.
$$

which is:

$$
\left\{\begin{array}{l}
\hat{\beta}_{0}=\widehat{\pi}_{12}+\hat{\beta}_{1} \widehat{\pi}_{11} \\
\hat{\beta}_{1}=\frac{\widehat{\pi}_{22}}{\widehat{\pi}_{21}}
\end{array}\right.
$$

## Case demo: OLS estimates for reduced equation

Next, we carry out OLS regression for the reduced equation.

$$
\left\{\begin{aligned}
P_{t} & =\pi_{11}+\pi_{21} X_{t}+w_{t} & & \text { (reduced eq1) } \\
Q_{t} & =\pi_{12}+\pi_{22} X_{t}+v_{t} & & \text { (reduced eq2) }
\end{aligned}\right.
$$

The regression result of the reduced price equation is:

$$
\begin{array}{lll}
\widehat{P}= & +90.96 & +0.00 X \\
\text { (t) } & (22.4499) & (3.0060) \\
\text { (se) } & (4.0517) & (0.0002) \\
\text { (fitness) } & R^{2}=0.2440 ; \bar{R}^{2}=0.2170 \\
r & F^{*}=9.04 ; & p=0.0055
\end{array}
$$

The regression result of the reduced quantity equation is:

$$
\begin{array}{lll}
\widehat{Q}= & +59.76 & +0.00 X \\
\text { (t) } & (38.3080) & (20.9273) \\
\text { (se) } & (1.5600) & (0.0001) \\
\text { (fitness) } & R^{2}=0.9399 ; \bar{R}^{2}=0.9378 \\
& F^{*}=437.95 ; p=0.0000
\end{array}
$$

## Case demo: obtain structural coefficients

we can obtain the reduced coefficients:

- $\widehat{\pi}_{21}=0.00074$
- $\widehat{\pi}_{22}=0.00197$
- $\widehat{\pi}_{11}=90.96007$
- $\widehat{\pi}_{12}=59.76183$

Because supply equation in structural SEM is Just identification, so the structural coefficients of supply equation can be calculated by using the estimated reduced coefficients.
$\hat{\beta}_{1}=\frac{\widehat{\pi}_{22}}{\widehat{\pi}_{12}}=0.00197 / 0.00074=2.68052$
$\hat{\beta}_{0}=\widehat{\pi}_{12}+\hat{\beta}_{1} \widehat{\pi}_{11}=59.76183-2.68052 \cdot 90.96007=-184.05874$
Therefore, the ILS estimators of supply equation parameters are:

$$
\hat{Q}_{t}=-184.05874+2.68052 P_{t}
$$

## Case demo: result comparison

As comparison, we will show a "biased" estimation method, which use OLS directly for both quantity and price equation.

- Estimation of the supply equation• Estimation of the supply equation based on based on the ILS approach: the biased OLS approach:

$$
\hat{Q}_{t}=-184.05874+2.68052 P_{t}
$$

$$
\begin{array}{lll}
\widehat{Q}= & +20.89 & +0.67 P \\
(\mathrm{t}) & (0.9067) & (2.9940) \\
(\mathrm{se}) & (23.0396) & (0.2246) \\
(\text { fitness }) & R^{2}=0.2425 ; \bar{R}^{2}=0.2154 \\
& F^{*}=8.96 ; \quad p=0.0057
\end{array}
$$

### 20.4 Two-stage least square method (2SLS)

## Overidentification: structural SEM

Consider the following structural SEM:

$$
\left\{\begin{array}{lll}
Y_{t 1}= & +\gamma_{21} Y_{2 t}+\beta_{01}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2} & +u_{t 1} \\
Y_{t 2}=+\gamma_{12} Y_{t 1} & +\beta_{02} & +u_{t 2} \\
\text { (monetary supply eq) }
\end{array}\right.
$$

where: $Y_{1}=$ Income; $Y_{2}=$ Monetary stock; $X_{1}=$ Government expenditure; $X_{2}=$ Government spending on goods and services

Using order condition rules and rank condition rules (Review), we can know:

- The Income equation is underidentification
- if you don't change the model specification, then god can't help you!
- The monetary supply equation is overidentification it's easy to prove that if we apply the ILS approach we will obtain two estimates on $\gamma_{21}$. Hence it is impossible to determin the exact value.


## Overidentification: Instrument variables

Looking for Instrument variables approach to crack the overidentification problems:

- In practice, people might want to use OLS to estimate the monetary supply equation, but it will get the biased estimators, because there exist correlationship between $Y_{1}$ and $u_{2}$.

Instrument Variable: An agent variable which is highly correlated with $Y_{1}$ but have no relationship with $u_{2}$.

- if we can find an instrument variable, then we can apply OLS approach directly to estimate the structural monetary supply eqution.

But how does one obtain such an instrumental variable?
One answer is provided by the two-stageleast squares (2SLS), developed independently by Henri Theil and Robert Basmann.

## Overidentification: stage 1 of 2SLS

2SLS method involves two successive applications of OLS. The process is as follows:
Stage 1. To get rid of the likely correlation between $Y_{1}$ and $u_{2}$,apply regresssion $Y_{1}$ on all the predetermined variables in the whole system, not just that equation.

$$
\begin{aligned}
Y_{t 1} & =\widehat{\pi}_{01}+\widehat{\pi}_{11} X_{t 1}+\widehat{\pi}_{21} X_{t 2}+\hat{v}_{t 1} \\
& =\hat{Y}_{t 1}+\hat{v}_{t 1} \\
\hat{Y}_{t 1} & =\widehat{\pi}_{01}+\widehat{\pi}_{11} X_{t 1}+\widehat{\pi}_{21} X_{t 2}
\end{aligned}
$$

Indicates that the random $Y_{1}$ is composed of two parts:

- a linear combination of the nonstochastic $X$
- random component $\hat{u}_{t}$
according to OLS theory, $\hat{Y}_{t 1}$ is not related to $\hat{v}_{t 1}$ (Why?).


## Overidentification: stage 2 of 2SLS

stage 2. Now retransform the overidentification supply equation as follow:

$$
\begin{aligned}
Y_{t 2} & =\beta_{02}+\gamma_{12} Y_{t 1}+u_{t 2} \\
& =\beta_{02}+\gamma_{12}\left(\hat{Y}_{t 1}+\hat{v}_{t 1}\right)+u_{t 2} \\
& =\beta_{02}+\gamma_{12} \hat{Y}_{t 1}+\left(\gamma_{12} \hat{v}_{t 1}+u_{t 2}\right) \\
& =\beta_{02}+\gamma_{12} \hat{Y}_{t 1}+u_{t 2}^{*}
\end{aligned}
$$

We can prove that:

- the variable $Y_{t 1}$ may be relative with the disturbance term $u_{t 2}$, which will invalid the OLS approach.
- Meanwhile, $\hat{Y}_{1 t}$ is uncorrelated with $u_{t 2}^{*}$ asymptotically, that is, in the large sample (or more accurately, as the sample size increases indefinitely).

As a result, OLS can be applied to monetary Eq, which will give consistent estimates of the parameters of the monetary supply function.

## 2SLS approach: Features

Note the following features of 2SLS:

- It can be applied to an individual equation in the system without directly taking into account any other equation(s) in the system. Hence, for solving econometric models involving a large number of equations, 2SLS offers an economical method.
- Unlike ILS, which provides multiple estimates of parameters in the overidentified equations, 2SLS provides only one estimate per parameter.
- It is easy to apply because all one needs to know is the total number of exogenous or predetermined variables in the system without knowing any other variables in the system.
- Although specially designed to handle overidentified equations, the method can also be applied to exactly identified equations. But then ILS and 2SLS will give identical estimates. (Why?)


## 2SLS approach: Features

Note the following features of 2SLS (continue):

- If the $R^{2}$ values in the reduced-form regressions (that is, Stage 1 regressions) are very high, say, in excess of 0.8 , the classical OLS estimates and 2SLS estimates will be very close.

But this result should not be surprising because if the $R^{2}$ value in the first stage is very high, it means that the estimated values of the endogenous variables are very close to their actual values.

And hence the latter are less likely to be correlated with the stochastic disturbances in the original structural SEM. (Why?)

## 2SLS approach: Features

Note the following features of 2SLS (continue):

- Notice that in reporting the ILS regression we did not state the standard errors of the estimated coefficients. But we can do this for the 2SLS estimates because the structural coefficients are directly estimated from the second-stage (OLS) regressions.

The estimated standard errors in the second-stage regressions need to be modified because the error term $u_{t}^{*}$ is, in fact, equal to

$$
u_{2 t}+\beta_{21} \hat{u}_{t} .
$$

Hence, the variance of $u_{t}^{*}$ is not exactly equal to the variance of the original $u_{2 t}$.

## 2SLS approach: Features

Note the following features of 2SLS (continue):

- Remarks from Henri Theil:
- The statistical justification of the 2SLS is of the large-sample type.
- When the equation system contains lagged endogenous variables, the consistency and large-sample normality of the 2SLS coefficient estimators require an additional condition.
- Take cautions when lagged endogenous variables are not really predetermined.


## Standard error correction: why

In the regression report of ILS method, we do not give the standard error of the estimated coefficient, but we can give these standard error for the estimator of 2SLS.

- Remind $u_{t 2}^{*}=u_{t 2}+\gamma_{12} \hat{v}_{t 1}$
- It will imply $u_{t 2}^{*} \neq u_{t 2}$, and then we need to calculate the "correct" standard error for the purpose of inference.

For the specific method of error correction, please refer to appendix 20a. 2 of the textbook (Damodar Gujarati).

- In the following cases illurtration, we will show the 2SLS estimates without error correction and the 2 SLS estimates with error correction respectively.


## Standard error correction: focus stage 2

The process for error correction show as below.

- stage 2: The regression form of the supply equation is

$$
\begin{aligned}
Y_{t 2} & =\beta_{02}+\gamma_{12} Y_{1 t}+u_{2 t} \\
& =\beta_{02}+\gamma_{12}\left(\hat{Y}_{1 t}+\hat{v}_{t 1}\right)+u_{2 t} \\
& =\beta_{02}+\gamma_{12} \hat{Y}_{1 t}+\left(\gamma_{12} \hat{v}_{t 1}+u_{t 2}\right) \\
& =\beta_{02}+\gamma_{12} \hat{Y}_{1 t}+u_{t 2}^{*}
\end{aligned}
$$

Where:
$u_{t 2}^{*}=u_{t 2}+\gamma_{12} \hat{v}_{t 1}$

## Standard error correction: focus stage 2

- stage 2: the estimation for the parameter $\gamma_{12}$ is $\hat{\gamma}_{12}$, and its standard error $s . e_{\hat{\gamma}_{12}}$ can be calculated as below.

$$
\begin{gathered}
Y_{t 2}=\beta_{02}+\gamma_{12} \hat{Y}_{1 t}+u_{t 2}^{*} \\
\text { s. } e_{\hat{\gamma}_{21}}=\frac{\hat{\sigma}_{u_{t 2}^{*}}^{2}}{\sum \hat{y}_{t 1}^{2}} \\
\hat{\sigma}_{u_{t 2}^{*}}^{2}=\frac{\sum\left(u_{t 2}^{*}\right)^{2}}{n-2}=\frac{\sum\left(Y_{t 2}-\hat{\beta}_{02}-\hat{\gamma}_{12} \hat{Y}_{1 t}\right)^{2}}{n-2}
\end{gathered}
$$

## Standard error correction: results

- In fact, we know $u_{t 2}^{*} \neq u_{t 2}$, which means $\hat{\sigma}_{u_{t 2}^{*}} \neq \hat{\sigma}_{u_{t 2}}$.
- Thus we can obtain $\hat{\sigma}_{u_{t 2}}$.

$$
\begin{aligned}
\hat{u}_{t 2} & =Y_{t 2}-\hat{\beta}_{02}-\hat{\gamma}_{12} Y_{t 1} \\
\hat{\sigma}_{u_{2 t}}^{2} & =\frac{\sum\left(u_{2 t}\right)^{2}}{n-2}=\frac{\sum\left(Y_{t 2}-\hat{\beta}_{02}-\hat{\gamma}_{12} Y_{1 t}\right)^{2}}{n-2}
\end{aligned}
$$

## Standard error correction: for coefficients

Therefore, in order to correct the standard error of the coefficients estimated by stage 2 regression, it is necessary to multiply the standard error of each coefficient by the following error correction factor.

$$
\begin{gathered}
\eta=\frac{\hat{\sigma}_{u_{t 2}}^{2}}{\hat{\sigma}_{u_{t 2}}^{2}} \\
s . e_{\hat{\gamma}_{12}}^{*}=s . e_{\hat{\gamma}_{12}} \cdot \eta=s . e_{\hat{\gamma}_{12}} \cdot \frac{\hat{\sigma}_{u_{t 2}}^{2}}{\hat{\sigma}_{u_{t 2}^{*}}^{2}} \\
\text { s. } e_{\hat{\beta}_{02}}^{*}=s . e_{\hat{\beta}_{02}} \cdot \eta=s . e_{\hat{\beta}_{20}} \cdot \frac{\hat{\sigma}_{u_{t 2}}^{2}}{\hat{\sigma}_{u_{t 2}^{*}}^{2}}
\end{gathered}
$$

## Case study and application for 2SLS approach

## variable description

## Variables description

| vars | label | note |
| :---: | :---: | :---: |
| Y1 | GDP: gross domestic product | $(\$ 1$ billion in 2000 $)$ |
| Y2 | M2:money supply | $(\$ 1$ billion $)$ |
| X 1 | GDPI: Total private domestic investment | $(\$ 1$ billion in 2000) |
| X 2 | FEDEXP: Federal expenditure | $(\$ 1$ billion $)$ |
| Y1.11 | GDP_t-1: The gross domestic product of the previous period | $(\$ 1$ billion in 2000) |
| Y2.11 | M2_t-1: The money supply in the previous period | $(\$ 1$ billion $)$ |
| X 3 | TB6: 6 month Treasury bond interest rate | $(\%)$ |

## data set

## Sample data ( $n=36$ )

| year | Y1 | Y2 | X1 | X2 | Y1.11 | Y2.11 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 3771.9 | 626.5 | 427.1 | 201.1 |  |  |  |
| 1971 | 3898.6 | 710.3 | 475.7 | 220 | 3771.9 | 626.5 |  |
| 1972 | 4105 | 802.3 | 532.1 | 244.4 | 3898.6 | 710.3 |  |
| 1973 | 4341.5 | 855.5 | 594.4 | 261.7 | 4105 | 802.3 |  |
| 1974 | 4319.6 | 902.1 | 550.6 | 293.3 | 4341.5 | 855.5 |  |
| 1975 | 4311.2 | 1016.2 | 453.1 | 346.2 | 4319.6 | 902.1 |  |
| 1976 | 4540.9 | 1152 | 544.7 | 374.3 | 4311.2 | 1016.2 |  |
| 1977 | 4750.5 | 1270.3 | 627 | 407.5 | 4540.9 | 1152 |  |
| Showing 1to 8 of 36 entrics |  |  |  |  | Previous | 1 | 2 |

## Modeling scenario 1

Only the money supply equation is overidentifiable

## Structural SEM and identification problems

Therefore, we can construct the following structural SEM:

$$
\begin{cases}Y_{t 1}=\beta_{01} & +\gamma_{21} Y_{t 2}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2} \\ Y_{t 2}=\beta_{02}+u_{12} Y_{1 t} \text { (income eq) } \\ y_{12} & +u_{t 2} \text { (money supply eq) }\end{cases}
$$

Where:

- $Y_{1}=G D P$ (gross domestic product GDP);
- $Y_{2}=M 2$ (money supply);
- $X_{1}=G D P I$ (Private domestic investment);
- $X_{2}=F E D E X P$ (Federal expenditure)


## 2SLS approach 1: without error correction

$$
\left\{\begin{array}{l}
Y_{t 1}=\beta_{01}+\gamma_{21} Y_{t 2}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2}+u_{t 1} \text { (income eq) } \\
Y_{t 2}=\beta_{02}+\gamma_{12} Y_{1 t} \quad+u_{t 2} \text { (money supply eq) }
\end{array}\right.
$$

stage 1: Estimate the regression of $Y_{1}$ to all predetermined variables in the structural SEM (not only in the equation under consideration), and obtain $\hat{Y}_{t 1} ; \hat{n}_{t 1}$.

That is:

$$
\begin{aligned}
Y_{1 t} & =\widehat{\pi_{0}}+\widehat{\pi_{1}} X_{1 t}+\widehat{\pi_{2}} X_{2 t}+\hat{v}_{t 1} \\
& =\hat{Y}_{1 t}+\hat{v}_{t 1}
\end{aligned}
$$

Regression results of stage 1:

\[

\]

## 2SLS approach 1: without error correction

At the same time, we can obtain $\hat{Y}_{t 1} ; \hat{v}_{t 1}$ :
New variable 2 t1. .hat and vt.1.hat after regression of stage 1

| year | Y1 | Y2 | X1 | X2 | Y1.11 | Y2.11 | Y1.hat | v1.hat |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 3771.9 | 626.5 | 427.1 | 201.1 |  |  | 3897.6136 | -125.7136 |  |
| 1971 | 3898.6 | 710.3 | 475.7 | 220 | 3771.9 | 626.5 | 4026.9427 | -128.3427 |  |
| 1972 | 4105 | 802.3 | 532.1 | 244.4 | 3898.6 | 710.3 | 4182.0464 | -77.0464 |  |
| 1973 | 4341.5 | 855.5 | 594.4 | 261.7 | 4105 | 802.3 | 4333.7391 | 7.7609 |  |
| 1974 | 4319.6 | 902.1 | 550.6 | 293.3 | 4341.5 | 855.5 | 4316.1193 | 3.4807 |  |
| 1975 | 4311.2 | 1016.2 | 453.1 | 346.2 | 4319.6 | 902.1 | 4241.4135 | 69.7865 |  |
| Showing 1 to 6 of 36 entries |  |  |  |  | Previous | 1 | 2 | 3 | 4 |

## 2SLS approach 1: without error correction

$$
\left\{\begin{array}{l}
Y_{t 1}=\beta_{01}+\gamma_{21} Y_{t 2}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2}+u_{t 1} \text { (income eq) } \\
Y_{t 2}=\beta_{02}+\gamma_{12} Y_{1 t} \quad+u_{t 2} \text { (money supply eq) }
\end{array}\right.
$$

stage 2: Now transform the overidentification supply equation as follows:

$$
Y_{t 2}=\beta_{02}+\gamma_{12} \hat{Y}_{1 t}+u_{t 2}^{*}
$$

Using the new variables in stage $\mathbf{1}$ results, and apply OLS estimation to obtain:

\[

\]

## Comparison 1: OLS approach with biased estimation

As comparison, we give a "biased" estimation with OLS method directly to the money supply equation, and obtain following result:

$$
\begin{array}{lll}
\widehat{Y 2}= & -2430.34 & +0.79 Y 1 \\
(\mathrm{t}) & (-19.1042) & (44.5059) \\
(\mathrm{se}) & (127.2148) & (0.0178) \\
(\text { fitness }) & R^{2}=0.9831 ; & \bar{R}^{2}=0.9826 \\
& F^{*}=1980.77 ; p=0.0000
\end{array}
$$

## Comparison 1: OLS approach with biased estimation

The R raw report for the biased regression show as:

```
Call:
lm(formula = models_money$mod.ols, data = us_money_new)
Residuals:
    Min 1Q Median 3Q Max
-418.3 -151.6 40.2 143.5
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.43e+03 1.27e+02 -19.1 <2e-16 ***
Y1 7.90e-01 1.78e-02 44.5 <2e-16 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 229 on 34 degrees of freedom
Multiple R-squared: 0.983, Adjusted R-squared: 0.983
F-statistic: 1.98e+03 on 1 and 34 DF, p-value: <2e-16
```


## Modeling scenario 2

both income equation and money supply equation are over-identifiable

Different from the former structural SEM, we can construct the improved one:

$$
\left\{\begin{array}{l}
Y_{t 1}=\beta_{01} \quad+\gamma_{12} Y_{t 2}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2} \\
Y_{t 2}=\beta_{02}+\gamma_{12} Y_{1 t} \quad+u_{12} Y_{1, t-1}+\beta_{22} Y_{2, t-1}+u_{t 2} \text { (money supply eq) }
\end{array}\right.
$$

Next, we judge the identification problem according to order condition rules 2 :

- The number of predetermineed variables in the structural SEM is $K=5$.
- The first equation: the number of predetermined variables is $k=3$, and $(K-k)=2$. Also the number of endogenous variables is $m=2$, and $(m-1)=1$. We will see $(K-k)>(m-1)$. So the first equation is overidentification.
- The second equation: the number of predetermined variables is $k=3$, and ( $K-k)=2$; Also the number of endogenous variables is $m=2$, and $(m-1)=1$. We will see $(K-k)>(m-1)$. Thus it is also overidentification.


## 2SLS approach 2: without error correction

Now, we will use two-stage least squares (2SLS) to get consistent estimates for both income equation and money supply equation.

## Stage 1:

- Estimate the regression of $Y_{1}$ to all predetermined variables in the structural SEM (not only in the equation under consideration), and obtain $\hat{Y}_{t 1} ; \hat{v}_{t 1}^{*}$.
- Meanwhile, estimate the regression of $Y_{2}$ to all predetermined variables in the structural SEM (not only in the equation under consideration), and obtain $\hat{Y}_{t 2} ; \hat{v}_{t 2}^{*}$ :

$$
\begin{aligned}
Y_{t 1} & =\widehat{\pi}_{01}+\widehat{\pi}_{11} X_{t 1}+\widehat{\pi}_{21} X_{t 2}+\widehat{\pi}_{31} Y_{t-1,1}+\widehat{\pi}_{41} Y_{t-1,2}+\hat{v}_{t 1} \\
& =\hat{Y}_{1 t}+\hat{v}_{t 1} \\
Y_{t 2} & =\widehat{\pi}_{02}+\widehat{\pi}_{12} X_{t 1}+\widehat{\pi}_{22} X_{t 2}+\widehat{\pi}_{32} Y_{t-1,1}+\widehat{\pi}_{42} Y_{t-1,2}+\hat{v}_{t 2} \\
& =\hat{Y}_{t 2}+\hat{v}_{t 2}
\end{aligned}
$$

## 2SLS approach 2: without error correction

- OLS regression results of new income equation at stage 1:

$$
\begin{aligned}
& \widehat{Y 1}=\quad+1098.90 \quad+0.98 X 1 \quad+0.77 X 2+0.59 Y 1 . l 1-0.01 Y 2 . l 1 \\
& \text { (t) (5.9222) (7.4954) (4.1895) (8.8729) (-0.1024) } \\
& \text { (se) (185.5566) (0.1308) (0.1831) (0.0667) (0.0721) } \\
& \text { (fitness) } R^{2}=0.9990 ; \bar{R}^{2}=0.9989 \\
& F^{*}=7857.58 ; p=0.0000
\end{aligned}
$$

## 2SLS approach 2: without error correction

- OLS regression results of new money supply equation at stage 1 :

\[

\]

## 2SLS approach 2: without error correction

Hence, we can obtain new variables from the two former regressions results respectively: $\hat{Y}_{t 1} ; \hat{v}_{t 1}$, and $\hat{Y}_{t 2} ; \hat{v}_{t 2}$.


## 2SLS approach 2: without error correction

## Stage 2:

- The re-transformed new income equation and the money supply equation are:

$$
\begin{aligned}
& Y_{t 1}=\beta_{01}+\gamma_{21} \hat{Y}_{t 2}+\beta_{11} X_{t 1}+\beta_{21} X_{t 2}+u_{t 1}^{*} \\
& Y_{t 2}=\beta_{20}+\gamma_{12} \hat{Y}_{1 t}+\beta_{12} Y_{t-1,1}+\beta_{22} Y_{t-1,2}+u_{t 2}^{*}
\end{aligned}
$$

- And then, we can conduct these new equations by using the former variables frome stage 1.


## 2SLS approach 2: without error correction

- OLS estimation results of new income equation in stage 2 :

$$
\begin{array}{lllll}
\widehat{Y 1}= & +2723.68 & +0.22 Y 2 . h a t+1.71 X 1+1.57 X 2 \\
(\mathrm{t}) & (40.3310) & (1.8961) & (9.2748) & (5.9811) \\
(\mathrm{se}) & (67.5331) & (0.1156) & (0.1848) & (0.2623) \\
\text { (fitness) } & R^{2}=0.9966 ; & \bar{R}^{2}=0.9963 \\
& F^{*}=3073.97 ; p=0.0000
\end{array}
$$

## 2SLS approach 2: without error correction

- OLS estimation results of the new money supply equation in stage 2:

$$
\begin{array}{lllll}
\widehat{Y 2}= & -228.13 & +0.11 Y 1 . h a t-0.03 Y 1 . l 1+0.93 Y 2 . l 1 \\
(\mathrm{t}) & (-1.4843) & (0.7685) & (-0.1691) & (15.0961) \\
(\mathrm{se}) & (153.6925) & (0.1431) & (0.1481) & (0.0618) \\
(\text { fitness }) & R^{2}=0.9981 ; & \bar{R}^{2}=0.9979 \\
& F^{*}=5461.60 ; p=0.0000
\end{array}
$$

## 2SLS approach 2：without error correction

## －The R raw report of OLS estimation for the new income equation in stage 2：

```
Call:
lm(formula = models_money2$mod2.stage2.1, data = us_money_new2)
Residuals:
    Min 1Q Median 3Q Max
-360.4 -66.8 35.7 81.2 186.2
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 2723.681 67.533 40.33 < 2e-16 ***
Y2.hat 0.219
X1 1.714 0.185 9.27 1.9e-10 ***
X2 1.569 0.262 5.98 1.3e-06 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 130 on 31 degrees of freedom
    (因为不存在, 1个观察量被删除了)
Multiple R-squared: 0.997, Adjusted R-squared: 0.996
F-statistic: 3.07e+03 on 3 and 31 DF, p-value: <2e-16
```


## 2SLS approach 2：without error correction

## －The R raw report of OLS estimation for the new money supply equation in stage $\mathbf{2}$ ：

```
Call:
lm(formula = models_money2$mod2.stage2.2, data = us_money_new2)
Residuals:
    Min 1Q Median 3Q Max
-192.58 -42.96 7.05 42.93 218.68
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -228.1320 153.6925 -1.48 0.15
Y1.hat 
Y1.l1 -0.0250 0.1481 -0.17 0.87
Y2.l1 0.9330 0.0618 15.10 7.8e-16 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 78 on 31 degrees of freedom
    (因为不存在, 1个观察量被删除了)
Multiple R-squared: 0.998, Adjusted R-squared: 0.998
F-statistic: 5.46e+03 on 3 and 31 DF, p-value: <2e-16
```


## 2SLS approach 2: with error correction

By using R systemfit package, we can apply the two-stage least square method with "error correction", and the report summarized as follows:

Result of 2SIS with error correction

| eq | vars | Estimate | Std. Error | t value | $\boldsymbol{P r}(>\|\mathbf{t}\|)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| eq1 | (Intercept) | $2,723.68$ | 69.1017 | 39.4155 | 0.0000 |
| eq1 | Y 2 | 0.22 | 0.1183 | 1.8530 | 0.0734 |
| eq1 | X 1 | 1.71 | 0.1891 | 9.0642 | 0.0000 |
| eq1 | X 2 | 1.57 | 0.2684 | 5.8453 | 0.0000 |
| eq2 | (Intercept) | -228.13 | 157.9455 | -1.4444 | 0.1587 |
| eq2 | Y 1 | 0.11 | 0.1471 | 0.7478 | 0.4602 |
| eq2 | Y 1.11 | -0.03 | 0.1522 | -0.1645 | 0.8704 |
| eq2 | Y2.11 | 0.93 | 0.0635 | 14.6896 | 0.0000 |

## 2SLS approach 2: with error correction

By using $R$ systemfit package, we can apply the two-stage least square method with "error correction", and the detail report show as follows:

```
systemfit results
method: 2SLS
    N DF SSR detRCov OLS-R2 McElroy-R2
system 70 62 749260 1.07e+08 0.997 0.998
N DF SSR MSE RMSE R2 Adj R2
eq1 35 31 549669 17731 133.2 0.996 0.996
eq2 35 31 199592 6438
The covariance matrix of the residuals
    eq1 eq2
eq1 17731-2604
eq2 -2604 6438
The correlations of the residuals
    eq1 eq2
eq1 1.000 -0.244
@กつ - ค ᄀ\triangleム 1 คคค
```


## Comparison 2: OLS approach with biased estimation

- "biased" OLS estimation results of the income equation:

\[

\]

- "biased" OLS estimates of the money supply equation:

\[

\]

### 20.5 Truffle supply and demand

## Case of Truffle supply and demand



## Variables description

## variables description

| vars | label | measure |
| :---: | :---: | :---: |
| P | market price of truffles | dollar/ounce |
| Q | market quantity of truffles | ounce |
| PS | market price of substitute | dollar/ounce |
| DI | disposable income | dollar/person, monthly |
| PF | rental price of truffle-pigs | dollar/hour |

## Data set

## Case data set ( $n=30$ )

| $\mathbf{P}$ | $\mathbf{Q}$ | PS | DI | PF |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 29.64 | 19.89 | 19.97 | 2.103 | 10.52 |  |
| 40.23 | 13.04 | 18.04 | 2.043 | 19.67 |  |
| 34.71 | 19.61 | 22.36 | 1.87 | 13.74 |  |
| 41.43 | 17.13 | 20.87 | 1.525 | 17.95 |  |
| 53.37 | 22.55 | 19.79 | 2.709 | 13.71 |  |
| 38.52 | 6.37 | 15.98 | 2.489 | 24.95 |  |
| 54.33 | 15.02 | 17.94 | 2.294 | 24.17 |  |
| 40.56 | 10.22 | 17.09 | 2.196 | 23.61 |  |
| Showing 1 to 8 of 530 entries |  |  | Previous | 1 | 2 |

## Scatter

The scatter plot on truffle quantity Q and truffle market price P is given below:


## The structural SEM

Given the structural SEM:

$$
\begin{cases}Q_{i}=\alpha_{0}+\alpha_{1} P_{i}+\alpha_{2} P S_{i}+\alpha_{3} D I_{i}+u_{i 1} & \text { (demand function) } \\ Q_{i}=\beta_{0}+\beta_{1} P_{i}+\beta_{2} P F_{i}+u_{i 2} & \text { (supply function) }\end{cases}
$$

## The reduced SEM

We can get the reduced SEM:

$$
\left\{\begin{array}{c}
P_{i}=\pi_{01}+\pi_{11} P S_{i}+\pi_{21} D I_{i}+\pi_{31} P F_{i}+v_{t 1} \\
Q_{i}=\pi_{02}+\pi_{12} P S_{t}+\pi_{22} D I_{i}+\pi_{32} P F_{i}+v_{t 2}
\end{array}\right.
$$

Also we obtain the relationship between structural and reduced coefficients:

$$
\left\{\begin{aligned}
\pi_{01} & =\frac{\beta_{0}-\alpha_{0}}{\alpha_{1}-\beta_{1}} \\
\pi_{11} & =-\frac{\alpha_{2}}{\alpha_{1}-\beta_{1}} \\
\pi_{21} & =-\frac{\alpha_{3}}{\alpha_{1}-\beta_{1}} \\
\pi_{31} & =\frac{\beta_{2}}{\alpha_{1}-\beta_{1}} \\
v_{t 1} & =\frac{u_{2 t}-u_{1 t}}{\alpha_{1}-\beta_{1}}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\pi_{02} & =-\frac{\alpha_{1} \beta_{0}-\alpha_{0} \beta_{1}}{\alpha_{1}-\beta_{1}} \\
\pi_{12} & =-\frac{\alpha_{2} \beta_{1}}{\alpha_{1}-\beta_{1}} \\
\pi_{22} & =-\frac{\alpha_{3} \beta_{1}}{\alpha_{1}-\beta_{1}} \\
\pi_{32} & =\frac{\alpha_{1} \beta_{2}}{\alpha_{1}-\beta_{1}} \\
v_{t 2} & =\frac{\alpha_{1} u_{2 t}-\beta_{1} u_{1 t}}{\alpha_{1}-\beta_{1}}
\end{aligned}\right.
$$

## Simple OLS solution: results

We can apply OLS method directly. Of course estimation results will be biased.

- tidy results of bias OLS estimation for the demand equation:

\[

\]

- tidy results of bias OLS estimation for the supply equation:

$$
\begin{array}{llll}
\widehat{Q}= & +20.03 & +0.34 P & -1.00 P F \\
(\mathrm{t}) & (16.3938) & (15.5436) & (-13.1028) \\
\text { (se) } & (1.2220) & (0.0217) & (0.0764) \\
\text { (fitness) } & R^{2}=0.9019 ; \bar{R}^{2}=0.8946
\end{array}
$$

## Simple OLS solution: R code (lm)

```
# set equation systems
eq.D <- Q~P+PS+DI
eq.S <- Q~P+PF
# fit using direct `OLS` method
ols.D <- lm(formula = eq.D, data = truffles)
ols.S <- lm(formula = eq.S, data = truffles)
# report
smry.olsD <- summary(ols.D)
smry.olsS <- summary(ols.S)
```


## Simple OLS solution: R report (lm)

```
Call:
lm(formula = eq.D, data = truffles)
Residuals:
    Min 1Q Median 3Q Max
-7.155 -1.936 -0.374 2.396 6.335
Coefficients:
\begin{tabular}{lrrr} 
& Estimate & Std. Error t value \\
(Intercept) & 1.0910 & 3.7116 & 0.29 \\
P & 0.0233 & 0.0768 & 0.30 \\
PS & 0.7100 & 0.2143 & 3.31 \\
DI & 0.0764 & 1.1909 & 0.06
\end{tabular}
-
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.
Residual standard error: 3.5 on 26 degr
Multiple R-squared: 0.496, Adjusted
F-statistic: 8.52 on 3 and 26 DF, p-va
```

```
Call:
lm(formula = eq.S, data = truffles)
Residuals:
    Min 1Q Median 3Q Max
-3.783 -0.853 0.227 0.758 3.347
Coefficients:
            Estimate Std. Error t value
(Intercept) 20.0328 1.2220 16.4
P 0.3380 0.0217 15.5
PF -1.0009 0.0764 -13.1
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.
```

Residual standard error: 1.5 on 27 degr Multiple R-squared: 0.902, Adjusted F-statistic: 124 on 2 and 27 DF, $p-v a$ (5) Simple OLS (5) Simple OLS s

## Simple OLS solution: R code (symtemfit)

 Simple OLS Simple OLS s

-



## 

## Simple OLS solution: R report (symtemfit)

```
systemfit results
method: OLS
    N DF SSR detRCov OLS-R2 McElroy-R2
system 60 53 372 23.6 0.699 0.809
    N DF SSR MSE RMSE R2 Adj R2
eq1 30 26 311.2 11.97 3.46 0.496 0.438
eq2 30 27 60.6 2.24 1.50 0.902 0.895
The covariance matrix of the residuals
        eq1 eq2
eq1 11.97 1.81
eq2 1.81 2.24
The correlations of the residuals
    eq1 eq2
eq1 1.000 0.349
eq2 0.349 1.000
```


## IV-2SLS Solution: results

IV 2SIS result(using system fit : : system fit()

| eq | vars | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathbf{t}\|)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| eq1 | (Intercept) | -4.2795 | 5.5439 | -0.7719 | 0.4471 |
| eq1 | P | -0.3745 | 0.1648 | -2.2729 | 0.0315 |
| eq1 | PS | 1.2960 | 0.3552 | 3.6488 | 0.0012 |
| eq1 | DI | 5.0140 | 2.2836 | 2.1957 | 0.0372 |
| eq2 | (Intercept) | 20.0328 | 1.2231 | 16.3785 | 0.0000 |
| eq2 | P | 0.3380 | 0.0249 | 13.5629 | 0.0000 |
| eq2 | PF | -1.0009 | 0.0825 | -12.1281 | 0.0000 |

## IV-2SLS Solution: R code (symtemfit)

```
# load pkg
require(systemfit)
# set equation systems
eq.D <- Q~P+PS+DI
eq.S <- Q~P+PF
eq.sys <- list(eq.D, eq.S)
# set instruments
instr <- ~PS+DI+PF
# system fit using `2SLS` method
system.iv <-systemfit(
    formula = eq.sys, inst = instr,
    method="2SLS",
    data=truffles)
# report
smry.iv <- summary(system.iv)
```


## IV-2SLS Solution: R report (symtemfit)

```
systemfit results
method: 2SLS
            N DF SSR detRCov OLS-R2 McElroy-R2
system 60 53 692 49.8 0.439 0.807
    N DF SSR MSE RMSE R2 Adj R2
eq1 30 26 631.9 24.30 4.93 -0.024 -0.142
eq2 30 27 60.6 2.24 1.50 0.902 0.895
The covariance matrix of the residuals
        eq1 eq2
eq1 24.30 2.17
eq2 2.17 2.24
The correlations of the residuals
    eq1 eq2
eq1 1.000 0.294
eq2 0.294 1.000
```

The OLS regression results of reduced price equation:

$$
\begin{array}{lllll}
\widehat{P}= & -32.51 & +1.71 P S & +7.60 D I+1.35 P F \\
(\mathrm{t}) & (-4.0721) & (4.8682) & (4.4089) & (4.5356) \\
\text { (se) } & (7.9842) & (0.3509) & (1.7243) & (0.2985) \\
\text { (fitness) } & R^{2}=0.8887 ; \bar{R}^{2}=0.8758 \\
r & F^{*}=69.19 ; p=0.0000
\end{array}
$$

The OLS regression results of reduced quantity equation:

$$
\begin{array}{lllll}
\widehat{Q}= & +7.90 & +0.66 P S & +2.17 D I-0.51 P F \\
\text { (t) } & (2.4342) & (4.6051) & (3.0938) & (-4.1809) \\
\text { (se) } & (3.2434) & (0.1425) & (0.7005) & (0.1213) \\
\text { (fitness) } & R^{2}=0.6974 ; \bar{R}^{2}=0.6625 \\
& F^{*}=19.97 ; p=0.0000
\end{array}
$$

## Comparison: the biased OLS estimation

We can apply OLS method directly. Of course estimation results will be biased.

- tidy results of bias OLS estimation for the demand equation:

\[

\]

- tidy results of bias OLS estimation for the supply equation:

\[

\]

### 20.6 Cod supply and demand

## Cod supply and



## Variables description



## Sample data set

Data sect of cod case(obs, $n=111$ )

| date | lprice | quan | lquan | mon ${ }^{\text {a }}$ | tue |  | wed | thu | stormy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991-12-02 | -0.43 | 8,058 | 8.99 | 1 | 0 |  | 0 | 0 | 1 |
| 1991-12-03 | 0.00 | 2,224 | 7.71 | 0 | 1 |  | 0 | 0 | 1 |
| 1991-12-04 | 0.07 | 4,231 | 8.35 | 0 | 0 |  | 1 | 0 | 0 |
| 1991-12-05 | 0.25 | 5,750 | 8.66 | 0 | 0 |  | 0 | 1 | 1 |
| 1991-12-06 | 0.66 | 2,551 | 7.84 | 0 | 0 |  | 0 | 0 | 1 |
| 1991-12-09 | -0.21 | 10,952 | 9.30 | 1 | 0 |  | 0 | 0 | 0 |
| 1991-12-10 | -0.12 | 7,485 | 8.92 | 0 | 1 |  | 0 | 0 | 0 |
| Showing 1 to 7 of 111 entries |  |  |  |  | Previous | 1 | 23 | 45 | 16 Next |

五







\author{

} $x$
N

$$
N_{0}
$$

5

8

5

路號

－
－


2

$\square$
—

## The structural and reduced SEM

Given the structural SEM:

$$
\left\{\begin{array}{rlr}
\text { lquan }_{t} & =\alpha_{0}+\alpha_{1} \text { lprice }_{t}+\alpha_{2} \text { mon }_{t}+\alpha_{3} \text { tue }_{t}+\alpha_{4} \text { wen }_{t}+\alpha_{5} \text { th }_{t}+u_{1 t} & \\
\text { (demand eq) } \\
\text { lquan }_{t} & =\beta_{0}+\beta_{1} \text { lprice }_{t}+\beta_{3} \text { stormy }_{t}+u_{2 t} & \text { (supply eq) }
\end{array}\right.
$$

We can obtain the reduced SEM:

$$
\left\{\begin{array}{lll}
\text { lquan }_{t}=\pi_{0}+\pi_{1} \text { mon }_{t}+\pi_{2} \text { tue }_{t}+\pi_{3} \text { wen }_{t}+\pi_{4} \text { th }_{t}+\pi_{5} \text { stormy }_{t}+v_{t} & \text { (reduced eq1) } \\
\text { lprice }_{t}=\pi_{0}+\pi_{1} \text { mon }_{t}+\pi_{2} \text { tue }_{t}+\pi_{3} \text { wen }_{t}+\pi_{4} \text { th }_{t}+\pi_{5} \text { stormy }_{t}+v_{t} & \text { (reduced eq2) }
\end{array}\right.
$$

## OLS regression results of the reduced SEM

The regression results of reduced quantity equation show as follows:

$$
\begin{aligned}
& \widehat{l} \widehat{\text { lquan }}=+8.81 \\
& \begin{array}{lllllll}
\text { (t) } & (59.9225) & (0.4891) & (-2.4097) & (-2.6875) & (0.2671) & (-2.6979) \\
(\text { se }) & (0.1470) & (0.2065) & (0.2011) & (0.2058) & (0.2010) & (0.1437) \\
\text { (fitness) } n=111 ; & R^{2}=0.1934 ; \bar{R}^{2}=0.1550 \\
\\
\quad F^{*}=5.03 ; p=0.0004
\end{array}
\end{aligned}
$$

The regression results of reduced price equation show as follows:

$$
\begin{aligned}
& \widehat{\text { lprice }}=-0.27 \quad-0.11 \text { mon }-0.04 \text { tue } \quad-0.01 \text { wed }+0.05 \text { thu }+0.35 \text { stormy } \\
& \text { (t) } \quad(-3.5569)(-1.0525) \quad(-0.3937) \quad(-0.1106)(0.4753) \quad(4.6387) \\
& \text { (se) (0.0764) (0.1073) (0.1045) (0.1069) (0.1045) (0.0747) } \\
& \text { (fitness) } n=111 ; \quad R^{2}=0.1789 ; \bar{R}^{2}=0.1398 \\
& F^{*}=4.58 ; p=0.0008
\end{aligned}
$$

Results of 2 SIS with error corrrection

| eq | vars | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathbf{t}\|)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| eq1 | (Intercept) | 8.5059 | 0.1662 | 51.1890 | 0.0000 |
| eq1 | lprice | -1.1194 | 0.4286 | -2.6115 | 0.0103 |
| eq1 | mon | -0.0254 | 0.2148 | -0.1183 | 0.9061 |
| eq1 | tue | -0.5308 | 0.2080 | -2.5518 | 0.0122 |
| eq1 | wed | -0.5664 | 0.2128 | -2.6620 | 0.0090 |
| eq1 | thu | 0.1093 | 0.2088 | 0.5233 | 0.6018 |
| eq2 | (Intercept) | 8.6284 | 0.3890 | 22.1826 | 0.0000 |
| eq2 | lprice | 0.0011 | 1.3095 | 0.0008 | 0.9994 |
| eq2 | stormy | -0.3632 | 0.4649 | -0.7813 | 0.4363 |

```
systemfit results
method: 2SLS
    N DF SSR detRCov OLS-R2 McElroy-R2
system 222 213 110 0.107 0.094 -0.598
    N DF SSR MSE RMSE R2 Adj R2
eq1 111 105 52.1 0.496 0.704 0.139 0.098
eq2 111 108 57.5 0.533 0.730 0.049 0.032
The covariance matrix of the residuals
    eq1 eq2
eq1 0.496 0.396
eq2 0.396 0.533
The correlations of the residuals
    eq1 eq2
eq1 1.000 0.771
eq2 0.771 1.000
2SLS estimates for 'eq1' (equation 1)
Model Formula: lquan ~ lprice + mon + tue + wed + thu
```



## Comparison: the biased OLS estimation

- tidy results of bias OLS estimation for the demand equation:

$$
\begin{aligned}
& \widehat{\text { lquan }}=+8.61 \quad-0.56 \text { lprice }+0.01 \text { mon }-0.52 \text { tue }-0.56 \text { wed }+0.08 \text { thu } \\
& (\mathrm{t}) \quad(60.1698) \quad(-3.3443) \quad(0.0706) \quad(-2.6114)(-2.7450)(0.4126) \\
& \text { (se) (0.1430) (0.1682) (0.2026) (0.1977) (0.2023) (0.1978) } \\
& \text { (fitness) } R^{2}=0.2205 ; \bar{R}^{2}=0.1834 \\
& F^{*}=5.94 ; \quad p=0.0001
\end{aligned}
$$

- tidy results of bias OLS estimation for the supply equation:

$$
\begin{aligned}
& \widehat{\text { lquan }}=+8.50 \quad-0.44 \text { lprice }-0.22 \text { stormy } \\
& (\mathrm{t}) \quad(86.6914) \quad(-2.2560) \quad(-1.3253) \\
& \text { (se) (0.0981) (0.1942) (0.1630) } \\
& \text { (fitness) } R^{2}=0.0923 ; \bar{R}^{2}=0.0755 \\
& F^{*}=5.49 ; \quad p=0.0053
\end{aligned}
$$

## Comparison: the biased OLS estimation

## - raw R summry of bias OLS estimation for the demand equation:

```
Call:
lm(formula = fish.D, data = fultonfish)
Residuals:
    Min 1Q Median 3Q Max
-2.2384 -0.3674 0.0883 0.4230 1.2487
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.6069 0.1430 60.17 <2e-16 ***
lprice -0.5625 0.1682 -3.34 0.0011 **
mon 0.0143 0.2026 0.07 0.9438
tue -0.5162 0.1977 -2.61 0.0103 *
wed -0.5554 0.2023 -2.75 0.0071 **
thu 0.0816 0.1978 0.41 0.6807
Signif. codes:
0 '\star**' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.67 on 105 degrees of freedom
Multiple R-squared: 0.22, Adjusted R-squared: 0.183
```


## Comparison: the biased OLS estimation

## - raw R summry of bias OLS estimation for the supply equation:

```
Call:
lm(formula = fish.S, data = fultonfish)
Residuals:
    Min 1Q Median 3Q Max
-2.4042 -0.3754 0.0734 0.5197 1.2267
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.5009 0.0981 86.69 <2e-16 ***
lllll
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.71 on 108 degrees of freedom
Multiple R-squared: 0.0923, Adjusted R-squared: 0.0755
F-statistic: 5.49 on 2 and 108 DF, p-value: 0.00534
```


## End of this chapter!

THANKS FOR LISTENING

ANY QUESTION

