

统计学原理(Statistic)

第五章 相关和回归分析

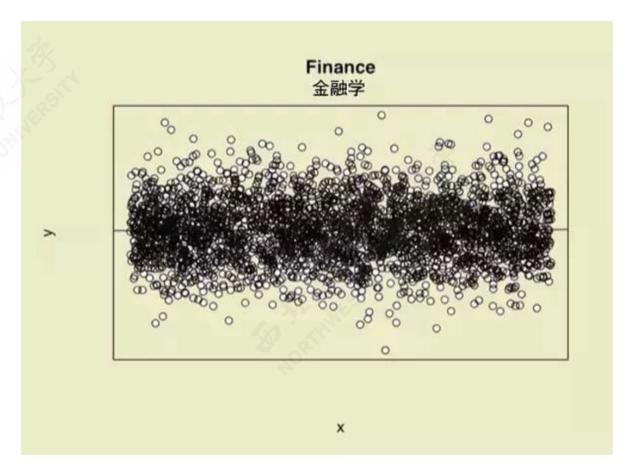
- 5.1 变量间关系的度量
- 5.2 回归分析的基本思想
- 5.3 QUS 方法与参数估计
 - 5.4 假设检验
- 5.5 拟合优度与残差分析
 - 5.6 回归预测分析
 - 5.7 回归报告解读

5.1 变量间关系的度量

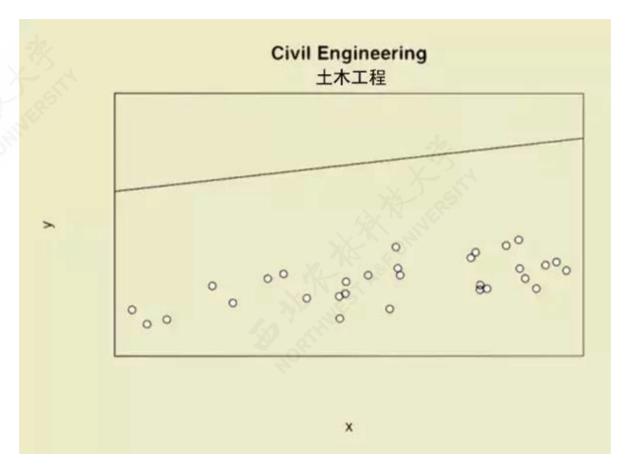

变量间的关系

相关关系的描述与测度

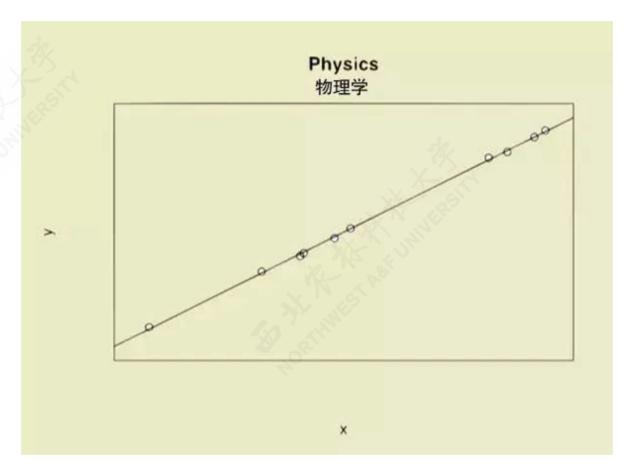
相关系数的显著性检验


(示例)变量间的关系:经济学专业解读

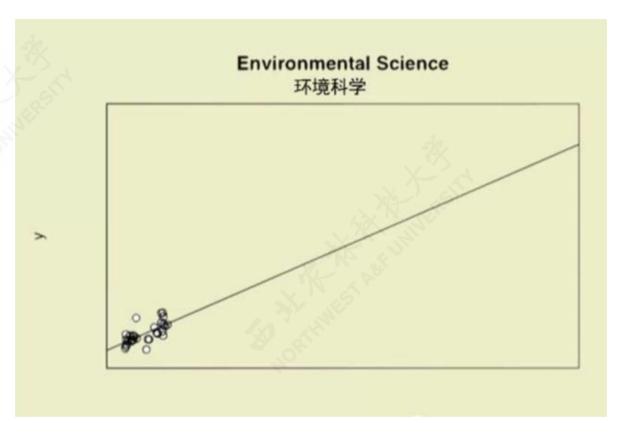
"我们数据不少,做了很严格的回归,但异常值略多略多,符合理论的数值反而难 找……"


(示例)变量间的关系:金融学专业解读

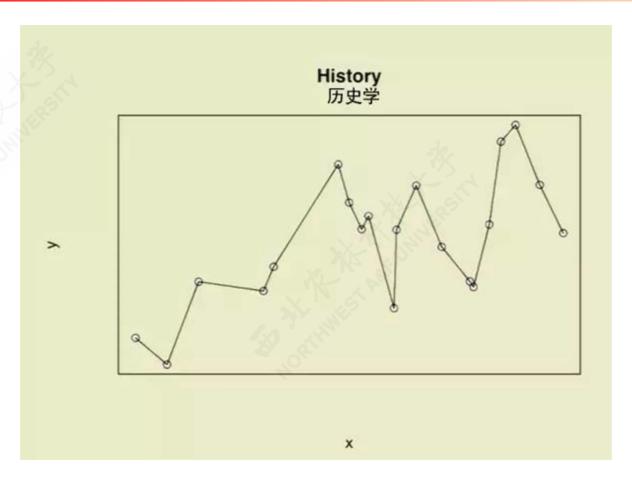
"我们的数据多如牛毛,无孔不入。即使做完回归,也会发现异常值和符合理论的数值多得不忍直视。"


(示例)变量间的关系:土木工程专业解读

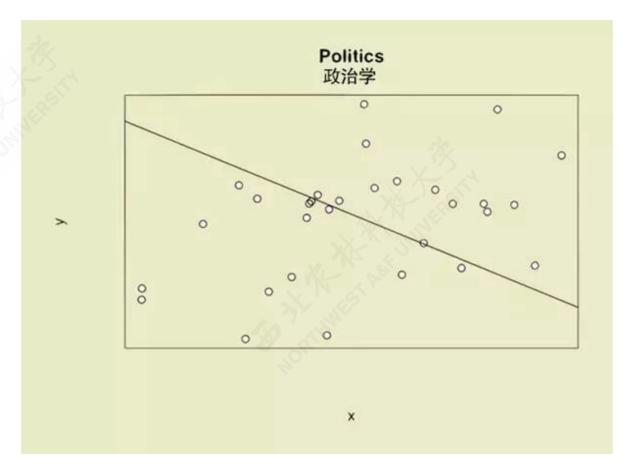
"我们得要设计余量,所以理论设计得远高于实际承受……"


(示例)变量间的关系:物理学专业解读

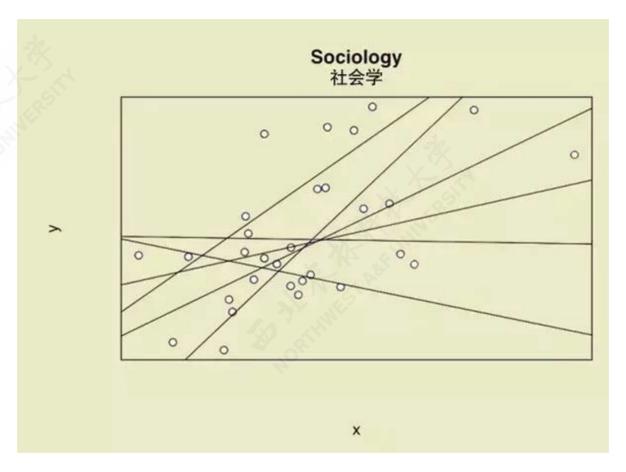
"我们的理论和数据严丝合缝, bingo!"


(示例)变量间的关系:环境科学专业解读

"我们的理论和数据大致吻合,就是……应用范围有点蛋疼。"

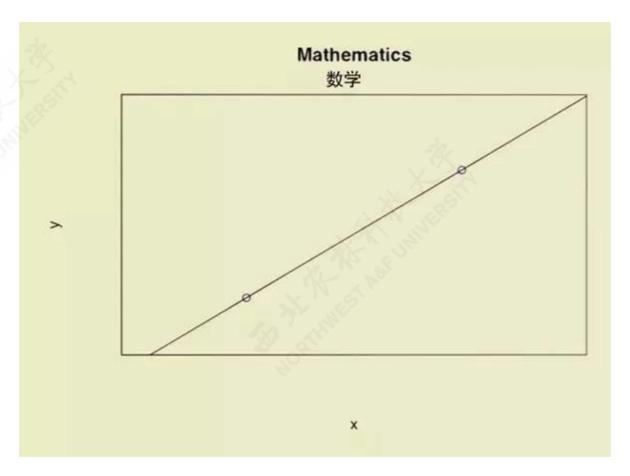

(示例)变量间的关系:历史学专业解读

"数据虽然很多,可我们能用理论把他们统统连起来!"


(示例)变量间的关系:政治学专业解读

"世界大势一日三变,尽管我们数据不少,可……我们的理论跟数据趋势是反着来

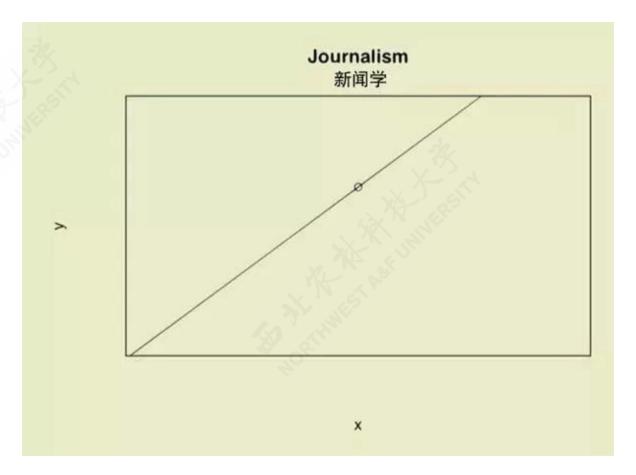
(示例)变量间的关系:社会学专业解读



"学海无涯苦作舟。那么多数据,那么多理论,慢慢学,恩……"

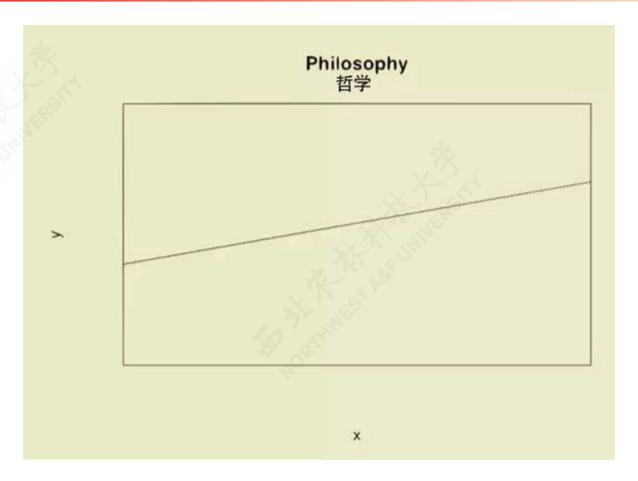
huhuaping@ 第05章 相关和回归分析 5.1 变量间关系的度量

(示例)变量间的关系:数学专业解读



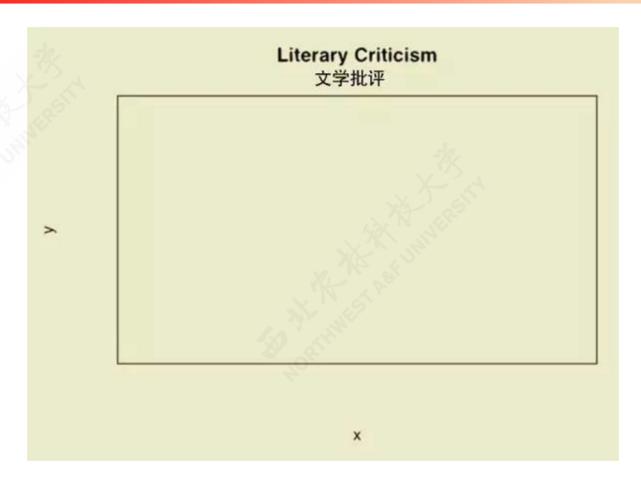
"数据很少,但能建立理论~"

5.1 变量间关系的度量 huhuaping@ 第05章 相关和回归分析


(示例)变量间的关系:新闻学专业解读

(示例) "只有一个数据,也能建立理论……"

(示例)变量间的关系:哲学专业解读



"没有数据,依然建立理论……"

5.1 变量间关系的度量 huhuaping@ 第05章 相关和回归分析 14 / 50

(示例)变量间的关系:文学批评专业解读

"如图所示,你懂的……"

变量间的关系:函数关系

两个变量若存在是一一对应的确定关系,则称之为二者具有函数关系。

设有两个变量 X和 Y,变量 Y随变量 X一起变化,并完全依赖于 X,当变量 X取某个数值时, Y依确定的关系取相应的值,则称 Y是 X的函数,记为 Y = f(X),其中 X称为自变量, Y称为因变量。

从几何学角度来看,数据集各观测点会落在一条曲线上。

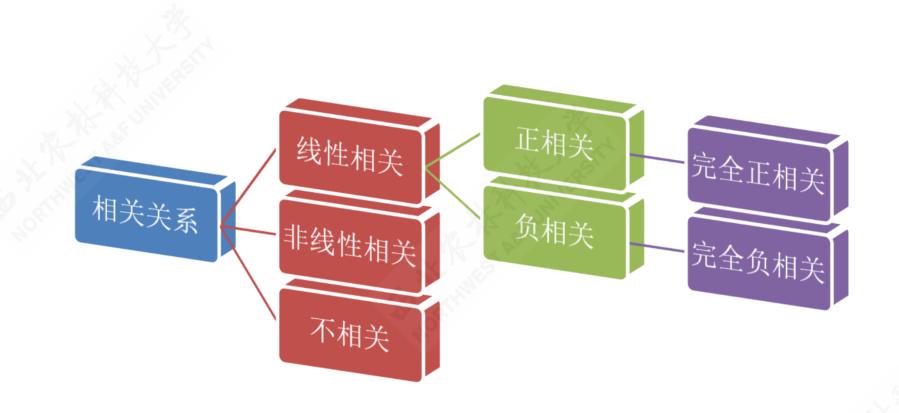
huhuaping@ 第05章 相关和回归分析 5.1 变量间关系的度量 16 / 50

(示例)函数关系

某种商品的销售额 Y与销售量 X之间的关系可表示为(P为单价):

$$Y_i = P_i \cdot X_i$$

圆的面积 S与半径 R之间的关系可表示为:


$$S = \pi R^2$$

企业的原材料消耗额 Y与产量 X1 、单位产量消耗 X2 、原材料价格 X3之间 的关系可表示为:

$$Y = X_1 \cdot X_2 \cdot X_3$$

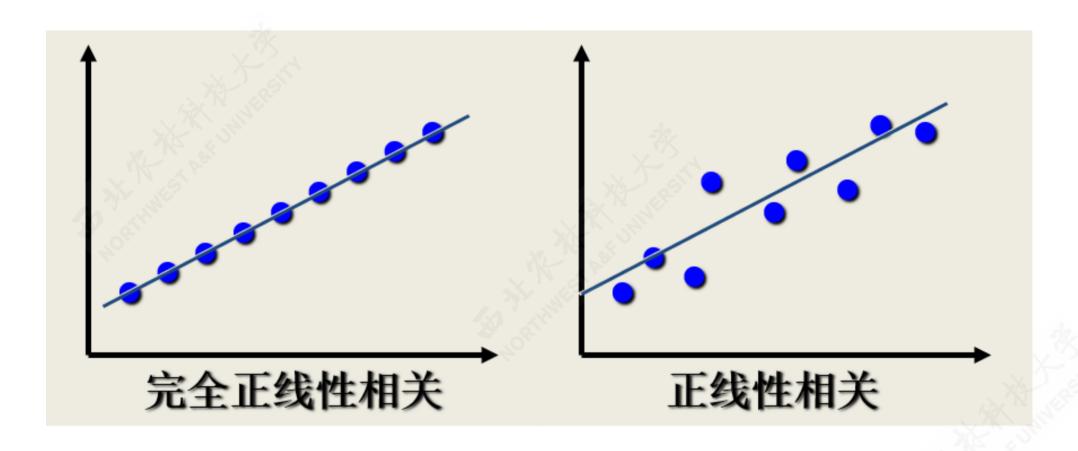
变量间的关系:相关关系(correlation)

相关关系的类型

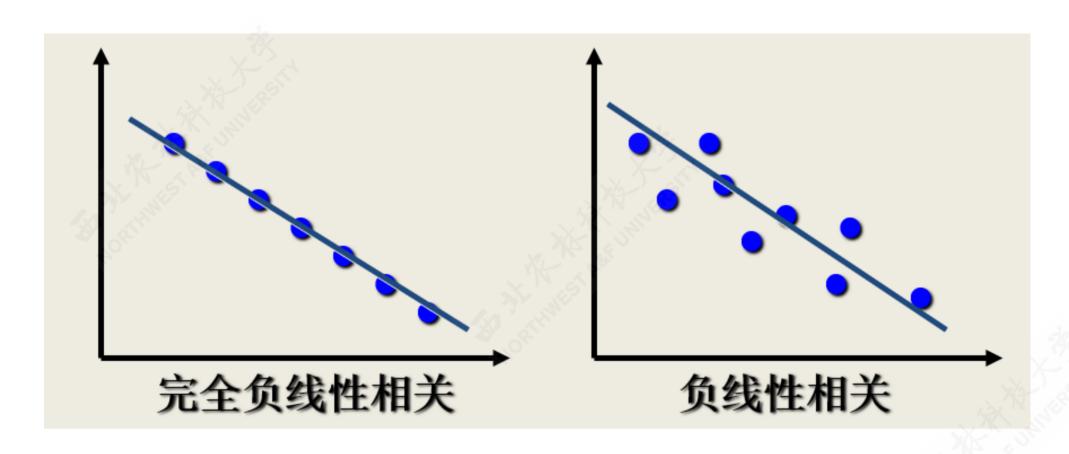
(示例)相关关系

- 父亲身高 Y与子女身高 X之间的关系
- 收入水平 Y与受教育程度 X之间的关系
- 粮食单位面积产量 Y与施肥量 X1 、降雨量 X2、温度 X3之间的关系
- 商品的消费量 Y与居民收入 X之间的关系
- 商品销售额 Y与广告费支出 X之间的关系

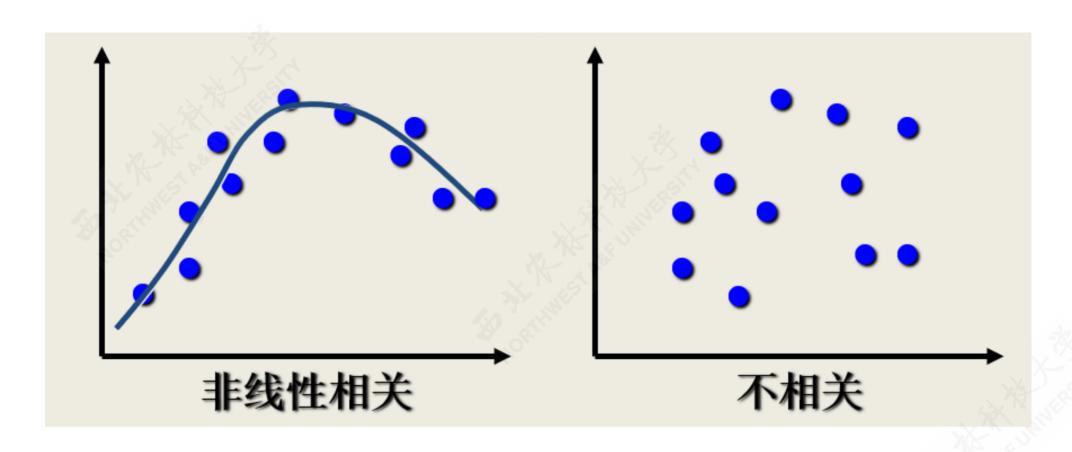
相关关系的描述与测度:问题与假定

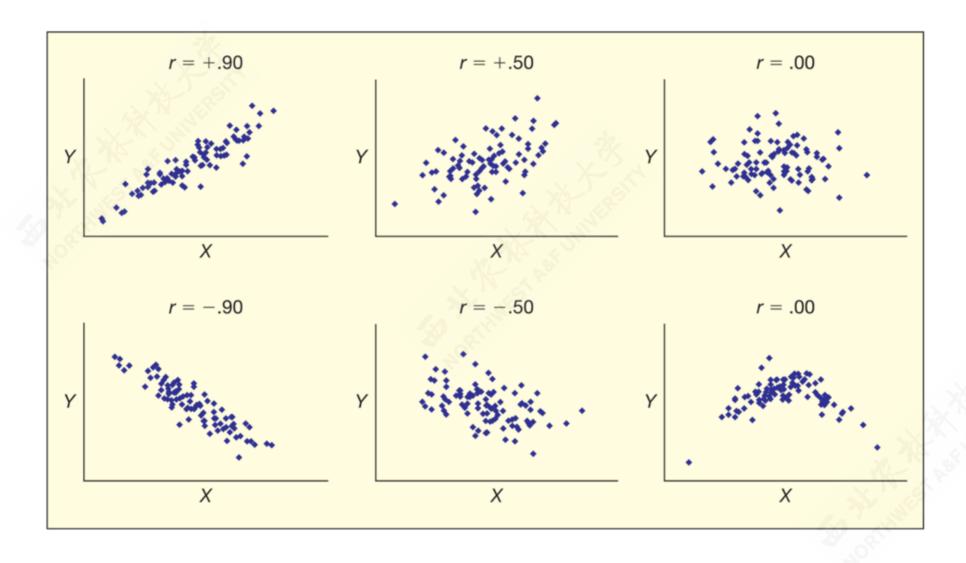

相关分析要解决的问题:

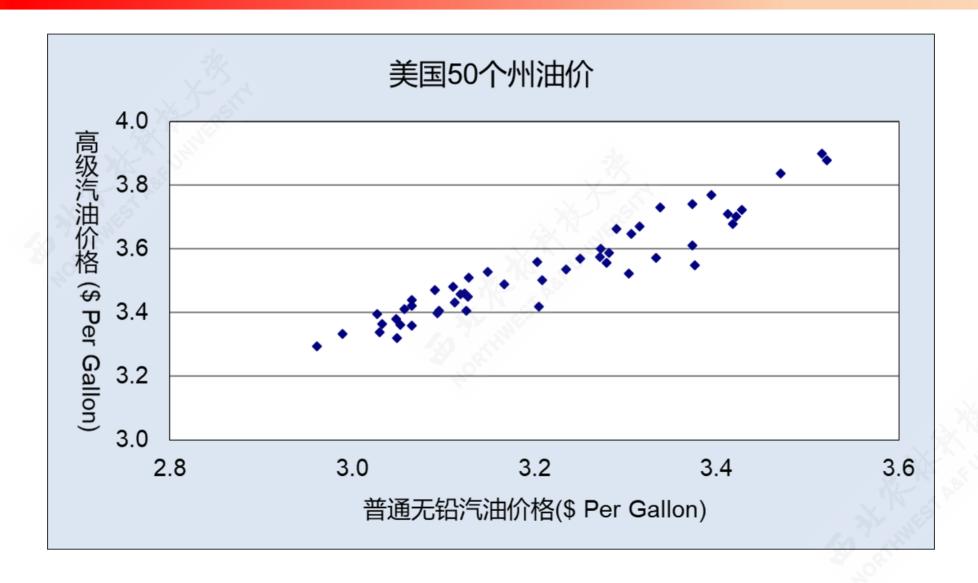
- 变量之间是否存在关系?
- 如果存在关系,它们之间是什么样的关系?
- 变量之间的关系强度如何?
- 样本所反映的变量之间的关系能否代表总体变量之间的关系?

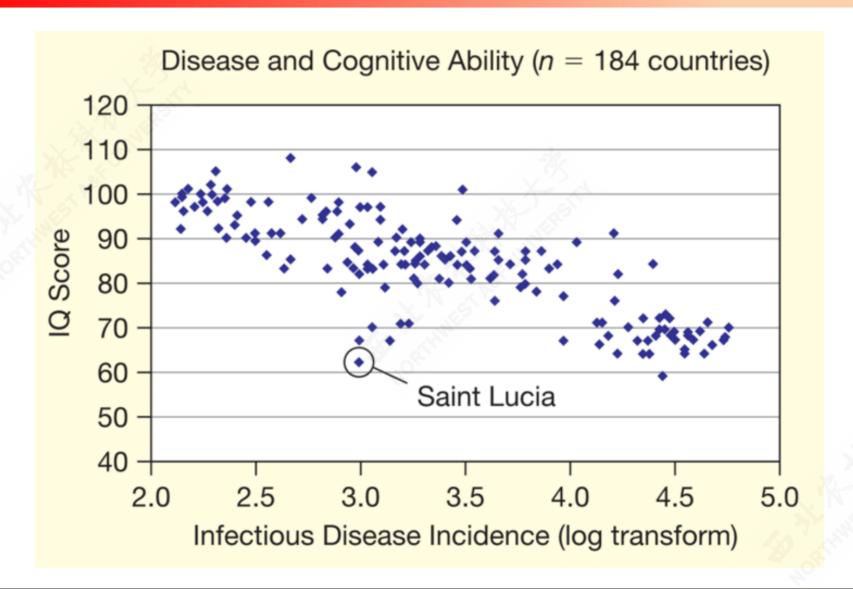

相关分析中的总体假定:

- 两个变量之间是线性关系
- 两个变量都是随机变量









(示例)两类油价的散点图

(示例)传染病与认知水平的散点图

相关关系的描述与测度:相关系数

相关系数(correlation coefficient): 是度量变量之间关系强度的一个统计 量。

- 它是对两个变量之间线性相关强度的一种度量。
- 一般称为简单相关系数,也称为线性相关系数(linear correlation coefficient)
- 或称为Pearson相关系数(Pearson's correlation coefficient)。

相关系数记号表达:

- 若相关系数是根据总体全部数据计算的,称为总体相关系数,记为 ρ 。
- 若是根据样本数据计算的,则称为样本相关系数,简称为相关系数,记为 r。

huhuaping@ 第05章 相关和回归分析 5.1 变量间关系的度量 27 / 50

相关关系的描述与测度:计算公式

简单相关系数的大FF计算公式:

$$r = \frac{n\sum X_i Y_i - \sum X_i \sum Y_i}{\sqrt{n\sum X_i^2 - (\sum X_i)^2} \cdot \sqrt{n\sum Y_i^2 - (\sum Y_i)^2}}$$
(eq01)

简单相关系数的小ff计算公式:

$$r = \frac{\sum \left((X_i - \overline{X})(Y_i - \overline{Y}) \right)}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}} = \frac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}} = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}} \quad (eq02)$$

$$SS_{XX} = \sum_{i=1}^n \left(X_i - \overline{X}
ight)^2; \quad SS_{YY} = \sum_{i=1}^n \left(Y_i - \overline{Y}
ight)^2; \quad SS_{XY} = \sum_{i=1}^n \left(X_i - \overline{X}
ight) \left(Y_i - \overline{Y}
ight)^2$$

相关关系的描述与测度:特征

简单相关系数的特征:

性质1: r的取值范围是 [-1,1], |r|越趋于1表示相关关系越强; |r|越趋于0表 示相关关系越弱。

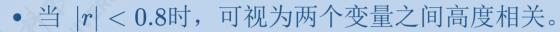
- 如果 |r|=1, 为完全相关。其中 r=1, 为完全正相关; r=-1, 为完全负正相关
- 如果 r=0,不存在线性相关关系
- 如果 -1 < r < 0, 为负相关; 如果 0 < r < 1, 为正相关。

性质2: r具有对称性。即 X与 Y之间的相关系数和 Y与 X之间的相关系数相 等,即 $r_{XY}=r_{YX}$ 。

相关关系的描述与测度:特征

简单相关系数的特征:

性质3: r数值大小与 X和 Y原点及尺度无关,即改变 X和 Y的数据原点及计 量尺度,并不改变 r数值大小。


性质4: 仅仅是 X与 Y之间线性关系的一个度量,它不能用于描述非线性关 系。这意为着, r=0只表示两个变量之间不存在线性相关关系,并不说明变量 之间没有任何关系

性质5: r虽然是两个变量之间线性关系的一个度量,却不一定意味着 X与 Y一 定有因果关系。

相关关系的描述与测度:解释

下面给出实证研究时,对相关系数的经验解释:

- 当 0.5 < |r| < 0.8时,可视为中度相关。
- 当 0.3 < |r| < 0.5时,视为低度相关。
- 当 |r| < 0.3时,说明两个变量之间的相关程度极弱,可视为不相关。

而且上述解释必须建立在对相关系数的显著性进行检验的基础之上。

相关关系的描述与测度:简单相关系数

简单相关系数(simple correlation coefficient):

• Y_i 和 X_{2i} 之间的相关系数:

$$r_{12} = rac{\sum y_i x_{2i}}{\sqrt{\sum y_i^2} \sqrt{\sum x_{2i}^2}}$$

• Y_i 和 X_{3i} 之间的相关系数:

$$r_{13}=rac{\sum y_i x_{3i}}{\sqrt{\sum y_i^2}\sqrt{\sum x_{3i}^2}}$$

• X_{2i} 和 X_{3i} 之间的相关系数:

$$r_{23} = rac{\sum x_{2i} x_{3i}}{\sqrt{\sum x_{2i}^2} \sqrt{\sum x_{3i}^2}}$$

huhuaping@

相关关系的描述与测度:偏相关系数

偏相关系数 (partial correlation coefficient): 一个不依赖于 X_{2i} 的,对 X_{3i} 和 Y_i 的影响的一种相关系数。

• 保持 X_{3i} 不变, Y_{i} 和 X_{2i} 之间的 • 保持 Y_{i} 不变, X_{2i} 和 X_{3i} 之间的 相关系数:

$$r_{12\cdot 3} = rac{r_{12} - r_{13} r_{23}}{\sqrt{\left(1 - r_{13}^2
ight)\left(1 - r_{23}^2
ight)}}$$

• 保持 X_{2i} 不变, Y_i 和 X_{3i} 之间的 相关系数:

$$r_{13.2} = rac{r_{13} - r_{12} r_{23}}{\sqrt{\left(1 - r_{12}^2
ight) \left(1 - r_{23}^2
ight)}}$$

相关系数:

$$r_{23.1} = rac{r_{23} - r_{12} r_{13}}{\sqrt{\left(1 - r_{12}^2
ight) \left(1 - r_{13}^2
ight)}}$$

相关系数的显著性检验

相关系数的显著性检验,是指检验两个变量之间是否存在线性相关关系。相关系数的显著性检验方法包括:

- 等价于对回归斜率系数 β_1 的检验(仅针对一元回归)
- 采用R. A. Fisher提出的t检验

huhuaping@ 第05章 相关和回归分析 5.1 变量间关系的度量 34 / 50

相关系数的显著性检验

相关系数的显著性检验步骤:

- 1) 提出假设: $H_0: \rho = 0; H_1: \rho \neq 0$
- 2) 计算样本统计量

$$T^* = |r|\sqrt{rac{n-2}{1-r^2}} \quad \sim t(n-2)$$

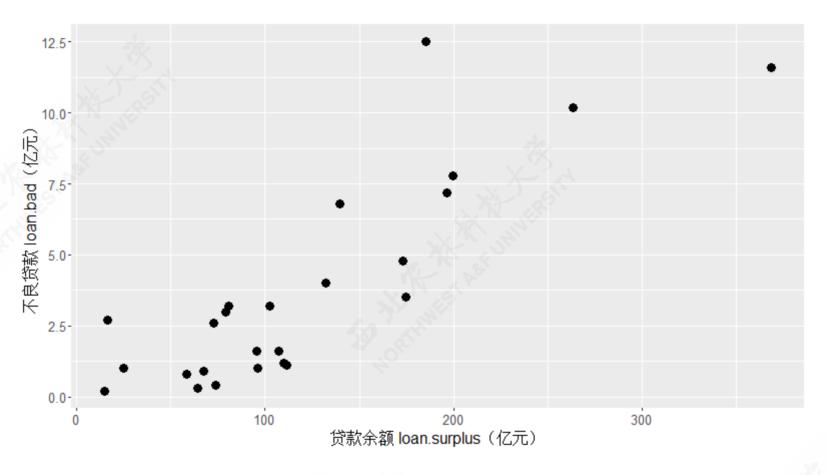
5.1 变量间关系的度量

- 3) 给定显著性水平 α , 确定t理论分布值 $t_{1-\alpha/2}(n-2)$ 。
- 4)得到假设检验结论:
 - 若 $T^* > t_{1-\alpha/2}(n-2)$, 则拒绝 H_0 , 认为显著存在相关关系;
 - 若 $T^* < t_{1-\alpha/2}(n-2)$,则无法拒绝 H_0 ,认为相关关系不显著。

(案例)银行贷款:案例数据

案例说明:某银行共有25家分行,分行及所在地区的相关变量数据如下表所示。

-						
_	ID. bank 🕈	loan.bad 🕈	loan. surplus 🕈	loan.receivable †	loan.numbers †	invest
	1	0.9	67. 3	6.8	5	
	2	1. 1	111.3	19.8	16	
	3	4.8	173	7. 7	17	
	4	3. 2	80.8	7. 2	10	
	5	7.8	199. 7	16. 5	19	
	6	2. 7	16. 2	2. 2	1	
	7	1.6	107. 4	10. 7	17	


Showing 1 to 7 of 25 entries

Previous 1 2 3 4 Next

说明:上述变量的含义分别是ID.bank(分行编号)、loan.bad(不良贷款)、loan.surplus(各项贷款余额)、loan.receivable(本年累计应收贷款)、loan.numbers(贷款项目个数)、investment.fixed(本年固定资产投资额)。

(案例)银行贷款:不良贷款18贷款余额的散点图

不良贷款必贷款余额散点图

(案例)银行贷款:不良贷款必贷款余额的相关系数(大分)

	=10.		76001191776		
 ID. bank	♦ Y ♦	X	XY	X_sqr •	Y_sqr •
1	0.9	67.3	60. 57	4, 529. 29	0.81
2	1. 1	111.3	122. 43	12, 387. 69	1. 21
3	4.8	173	830. 40	29, 929. 00	23. 04
4	3. 2	80.8	258. 56	6, 528. 64	10. 24
5	7.8	199. 7	1, 557. 66	39, 880. 09	60.84
6	2.7	16. 2	43.74	262.44	7. 29
7	1.6	107.4	171.84	11, 534. 76	2. 56
	-				

Showing 1 to 7 of 26 entries

Previous 1 2 3 4 Next

38 / 50

(案例)银行贷款:不良贷款必贷款余额的相关系数(大分)

相关系数 r的大FF计算公式 (eq01):

$$egin{aligned} r &= rac{n \sum X_i Y_i - \sum X_i \sum Y_i}{\sqrt{n \sum X_i^2 - \left(\sum X_i
ight)^2} \cdot \sqrt{n \sum Y_i^2 - \left(\sum Y_i
ight)^2}} \ &= rac{25 imes 17080.14 - 3006.7 imes 93.2}{\sqrt{25 imes 516543.37 - \left(3006.7
ight)^2} \cdot \sqrt{25 imes 660.1 - \left(93.2
ight)^2}} \ &= 0.8436 \end{aligned}$$

(案例)银行贷款:不良贷款15贷款余额的相关系数(小份)

ふ	份计	算	表
	יי טען	7	

 <u> </u>							
 ID. bank 🔹	Y •	X	X	y •	x_sqr •	y_sqr +	ху
1	0.9	67. 3	-52.97	-2.83	2, 805. 61	8.00	149. 79
2	1. 1	111.3	-8.97	-2.63	80. 43	6. 91	23. 57
3	4.8	173	52. 73	1.07	2, 780. 66	1. 15	56. 53
4	3. 2	80.8	-39. 47	-0.53	1, 557. 72	0. 28	20.84
5	7.8	199. 7	79. 43	4.07	6, 309. 44	16. 58	323. 45
6	2.7	16. 2	-104.07	-1.03	10, 830. 15	1.06	106. 98
7	1.6	107. 4	-12.87	-2.13	165. 59	4. 53	27. 38
					·		No.XA

Showing 1 to 7 of 26 entries

Previous 1 2 3 4 Next

(案例)银行贷款:不良贷款US贷款余额的相关系数

相关系数 r的小FF计算公式 (eq02):

$$r = rac{\sum \left((X_i - \overline{X})(Y_i - \overline{Y})
ight)}{\sqrt{\sum (X_i - \overline{X})^2 (Y_i - \overline{Y})^2}} \ = rac{\sum x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}} \ = rac{5871.16}{\sqrt{154933.57 imes 312.65}} \ = 0.8436$$

(案例)银行贷款:相关系数矩阵表(Pearson)

```
corl_pearson<- round(cor(df_loan[,-1], method = "pearson"),4)
corl_pearson[upper.tri(corl_pearson)]<- NA</pre>
```

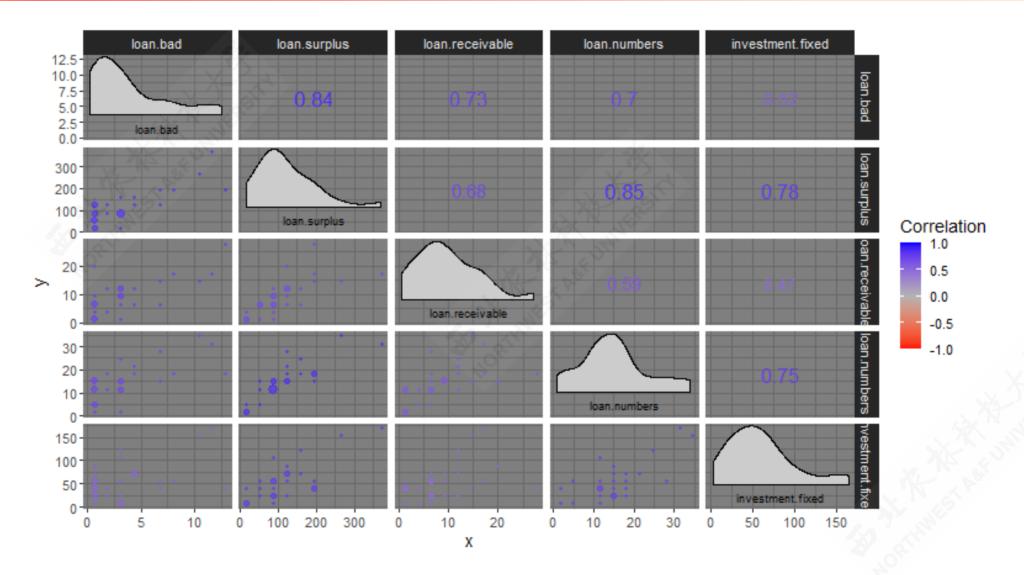
Pearson相关系数矩阵

Lo Million	loan. bad	loan. surplus	loan.receivable	loan.numbers	investment.fixed
loan. bad	1.0000	X	NE SE SE		
loan.surplus	0.8436	1. 0000			
loan.receivable	0.7315	0. 6788	1.0000		
loan.numbers	0.7003	0.8484	0. 5858	1.0000	
investment.fixed	0. 5185	0.7797	0. 4724	0.7466	1.0000

huhuaping@ 第05章 相关和回归分析 5.1 变量间关系的度量 42 / 50

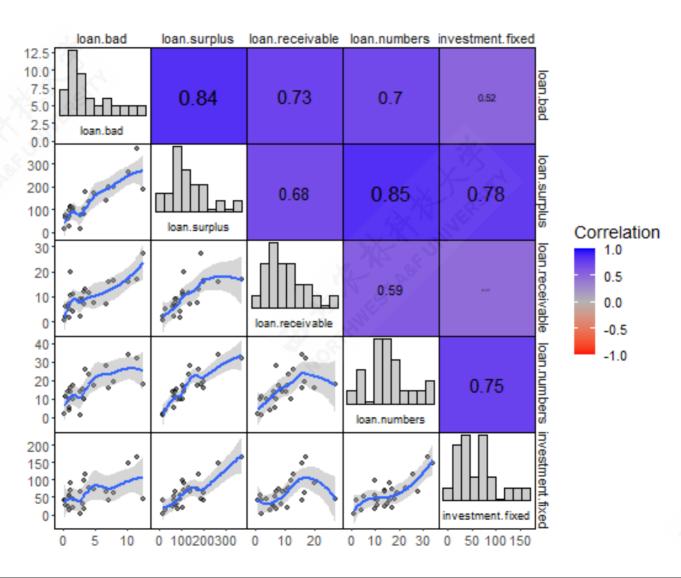
(案例)银行贷款:相关系数矩阵(Spearman)

```
corl_spearman<- round(cor(df_loan[,-1], method = "spearman"),4)
corl_spearman[upper.tri(corl_spearman)] <- NA</pre>
```


Spearman相关系数矩阵

	loan. bad	loan. surplus	loan.receivable	loan.numbers	investment.fixed
loan. bad	1.0000	X	NE SK ST		
loan. surplus	0.8339	1. 0000			
loan.receivable	0. 7331	0.8148	1.0000		
loan.numbers	0.7172	0.8559	0.7393	1.0000	
investment.fixed	0. 4407	0.6582	0. 5469	0. 5975	1.0000

huhuaping@ 第05章 相关和回归分析 5.1 变量间关系的度量 43 / 50



(案例)银行贷款:相关系数矩阵图

(案例)银行贷款:相关系数矩阵图

(案例)银行贷款:偏相关系数

假定我们认为不良贷款(loan.bad)与贷款余额(loan.surplus)及贷款项目数(loan.number)存在相互关系。

前面我们已经计算出如下的简单相关系数:

$$r_{12} = r_{_{bad,sur}} = 0.8436; \quad r_{13} = r_{_{bad,num}} = 0.7003; \quad r_{23} = r_{_{num,sur}} = 0.8484$$

因此我们可以分别计算出偏相关系数

huhuaping@

(案例)银行贷款:偏相关系数

• 保持 X_{3i} 不变, Y_i 和 X_{2i} 之间的相关系数:

$$r_{12\cdot3} = rac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2
ight)\left(1 - r_{23}^2
ight)}} = rac{0.84 - 0.7 imes 0.85}{\sqrt{\left(1 - 0.7^2
ight)\left(1 - 0.85^2
ight)}} = 0.6601$$

• 保持 X_{2i} 不变, Y_i 和 X_{3i} 之间的相关系数:

$$r_{13.2} = rac{r_{13} - r_{12} r_{23}}{\sqrt{\left(1 - r_{12}^2
ight)\left(1 - r_{23}^2
ight)}} = rac{0.7 - 0.84 imes 0.85}{\sqrt{\left(1 - 0.84^2
ight)\left(1 - 0.85^2
ight)}} = -0.0542$$

• 保持 Y_i 不变, X_{2i} 和 X_{3i} 之间的相关系数:

$$r_{23.1} = rac{r_{23} - r_{12} r_{13}}{\sqrt{\left(1 - r_{12}^2
ight)\left(1 - r_{13}^2
ight)}} = rac{0.85 - 0.84 imes 0.7}{\sqrt{\left(1 - 0.84^2
ight)\left(1 - 0.7^2
ight)}} = 0.6722$$

(案例)银行贷款:相关系数显著性检验(手算)

对于前述loan.surplus与loan.bad进行相关系数显著性检验(Pearson):

- 1) 提出假设: $H_0: \rho = 0; H_1: \rho \neq 0$
- 2) 计算样本统计量:

$$T^* = |r| \sqrt{rac{n-2}{1-r^2}} = 0.84 imes \sqrt{rac{25-2}{1-0.84^2}} = 7.53$$

- 3) 给定显著性水平 $\alpha = 0.05$,确定t理论分布值 $t_{1-\alpha/2}(n-2) = t_{1-0.05/2}(25-2) = t_{0.975}(23) = 2.07$ 。
- 4) 得到假设检验结论: 因为t样本统计量大于t理论查表值, 也即

$$[T^* = 7.53] > [t_{0.975}(23) = 2.07]$$

因此拒绝原假设 H_0 ,认为变量loan.surplus (贷款余额)与loan.bad (不良贷款)显著存在相关关系。

(案例)银行贷款:相关系数显著性检验(R软件)

我们可以使用R软件函数cor.test()对上述两个变量进行相关系数显著性检验:

```
cor.test(df_rel1$loan.surplus, df_rel1$loan.bad,
         method = "pearson")
    Pearson's product-moment correlation
data: df_rel1$loan.surplus and df_rel1$loan.bad
t = 8, df = 23, p-value = 0.0000001
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.67 0.93
sample estimates:
 cor
0.84
```

huhuaping@ 第05章 相关和回归分析 5.1 变量间关系的度量 49 / 50

本节结束

