

统计学原理(Statistic)

第五章 相关和回归分析

5.1 变量间关系的度量

5.2 回归分析的基本思想

5.3 QUS方法与参数估计

5.4 假设检验

5.5 拟合优度与残差分析

5.6 回归预测分析

5.7 回归报告解读

5.2 回归分析的基本思想

相关关系US因果关系

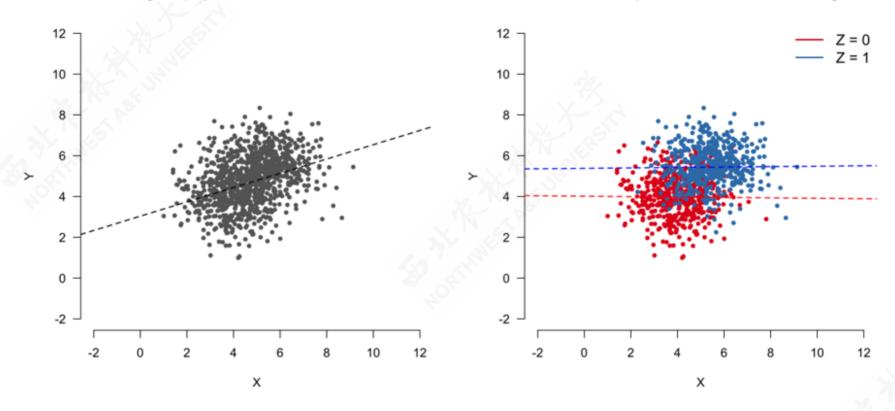
重要概念

线性回归分析

从一组样本数据出发,确定变量之间的数学关系式。

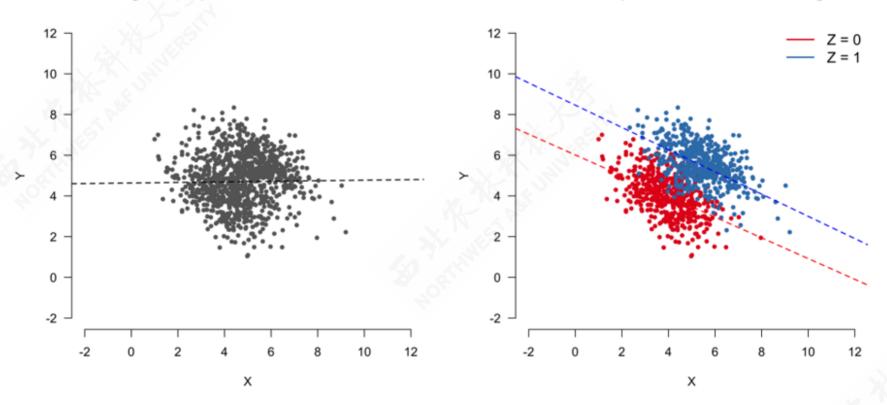
对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著。

利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。


huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 4 / 54

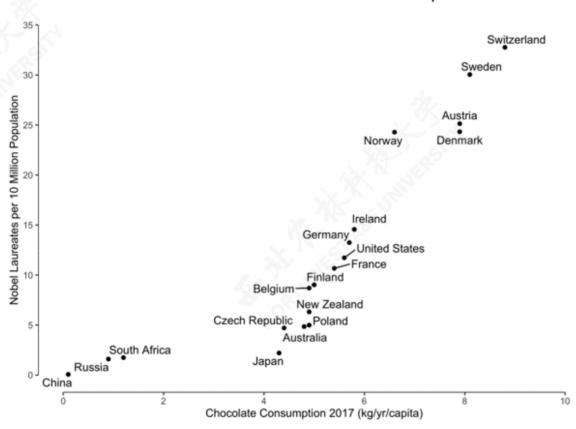
相关关系:边际相关与条件相关!

Conditional Independence between X and Y given Z


边际相关但是条件独立

相关关系:边际相关与条件相关?

Conditional Dependence between X and Y given Z

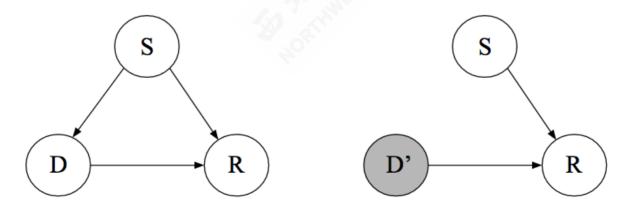

边际独立但是条件相关

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 6 / 54

相关关系必因果关系

Nobel Prizes and Chocolate Consumption

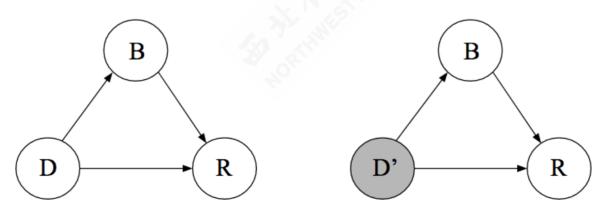
巧克力消费量与诺贝尔奖数量


huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 7 / 54

相关关系US因果关系:性别的作用

	Drug	No Drug
Men	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Women	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Men & Women	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

治疗康复表


因果关系图

相关关系US因果关系:血压的作用

	Drug	No Drug
Low Blood pressure	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
High Blood pressure	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Low & High Blood pressure	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

治疗康复表

因果关系图

(案例)假想总体:60个家庭的收支数据(直观列表)

-	妆	X,每周家庭收入(美元)												
Y	80	100	120	140	160	180	200	220	240	260				
X,	55	65	79	80	102	110	120	135	137	150				
AV	60	70	84	93	107	115	136	137	145	152				
周	65	74	90	95	110	120	140	140	155	175				
每周家庭消费支出	70	80	94	103	116	130	144	152	165	178				
消费	75	85	98	108	118	135	145	157	175	180				
支	—	88		113	125	140		160	189	185				
出	_			115		_		162		191				
小计	325	462	445	707	678	750	685	1043	966	1211				
合计					72	272								

60个家庭的收入和支出情况:假设的总体

(案例)假想总体:60个家庭的收支数据(扁数据形态)

60个家庭的收入和支出情况:假设的总体

	-	Way								
Mark 🕈	G1 *	G2 •	G3 *	G4 •	G5 •	G6 •	G7 •	G8 •	G9 •	G10 •
X	80	100	120	140	160	180	200	220	240	260
Y1	55	65	79	80	102	110	120	135	137	150
Y2	60	70	84	93	107	115	136	137	145	152
¥3	65	74	90	95	110	120	140	140	155	175
Y4	70	80	94	103	116	130	144	152	165	178
Y5	75	85	98	108	118	135	145	157	175	180
Y6		88		113	125	140		160	189	185
Y7				115				162		191

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 11 / 54

(案例)假想总体:60个家庭的收支数据(长数据形态)

60个家庭的收入和支出情况:假设的总体

	510	2.46.21.	113 70 1 11 11 11				
id	À	group	Å	X	A	Y	\$
1		1		80		55	
2		1		80		60	
3		1		80		65	
4		1		80		70	
5		1		80		75	
6		2		100		65	
7		2		100		70	
8		2		100		74	
Showing 1 to 8 of 60 entries	5		Previous	1 2 3	3 4 5	8	Next

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 12 / 54

重要概念:无条件概率和无条件期望

无条件概率:

- 定义: 不受 X_i 变量取值影响下, Y_i 出现的可能性。
- 记号: 离散变量 $P(Y_i)$; 连续变量 g(Y)

无条件期望:

- 定义: 不受 X_i 变量取值影响下,变量 Y_i 的期望值。
- 记号: $g(Y_i)$ 表示连续变量的概率密度函数 (cdf)

$$E(Y) = \sum_{1}^{N} Y_i \cdot P(Y_i) \qquad ext{(discrete vars)}$$
 $E(Y) = \int Y_i \cdot g(Y_i) dY \qquad ext{(continue vars)}$

(示例) 无条件概率和无条件期望的示例计算

									Χ,	每周	家庭收	ά λ (美元)												
		80		80		80		100		120		1	140		160		180		200		20	240		260	
	X	55	1/60	65	1/60	79	1/60	80	1/60	102	1/60	110	1/60	120	1/60	135	1/60	137	1/60	150	1/60				
	K	60	1/60	70	1/60	84	1/60	93	1/60	107	1/60	115	1/60	136	1/60	137	1/60	145	1/60	152	1/60				
	田 街	65	1/60	74	1/60	90	1/60	95	1/60	110	1/60	120	1/60	140	1/60	140	1/60	155	1/60	175	1/60				
1	ッ 変	70	1/60	80	1/60	94	1/60	103	1/60	116	1/60	130	1/60	144	1/60	152	1/60	165	1/60	178	1/60				
	每周家庭消费支出	75	1/60	85	1/60	98	1/60	108	1/60	118	1/60	135	1/60	145	1/60	157	1/60	175	1/60	180	1/60				
	⊁ H	-	-	88	1/60	_	-	113	1/60	125	1/60	140	1/60	-	-	160	1/60	189	1/60	185	1/60				
		-	_	_	_	_	-	115	1/60	_	-	_	-	-	-	162	1/60	_	_	191	1/60				
	小计	325	_	462	_	445	_	708	_	678	_	750	_	685	_	1043	_	966	_	1211	X				
	无条件期望																			×,	WE'S				

无条件概率和无条件期望

(示例)无条件期望的计算过程

$$E(Y) = \sum_{1}^{N} Y_i \cdot P(Y_i)$$

$$= \sum_{1}^{60} \left(55 * \frac{1}{60} + 60 * \frac{1}{60} + \dots + 191 * \frac{1}{60}\right)$$

$$= \frac{1}{60} \sum_{1}^{60} Y_i$$

$$= \frac{7272}{60}$$

$$= 121.2$$

重要概念:条件概率和条件期望

条件概率:

- 定义: 给定变量 X_i 的取值条件下, Y_i 出现的可能性。
- 记号: 离散变量 $P(Y_i|X_i)$; 连续变量 g(Y|X)

条件期望:

- 在给定变量 X_i 的取值条件下, Y_i 的期望值。
- 记号: g(Y|X)表示连续变量的条件概率密度函数 (cdf)

$$E(Y|X_i) = \sum_1^N \left(Y_i|X_i
ight) \cdot P(Y_i|X_i) \qquad ext{(discrete vars)}$$
 $E(Y|X_i) = \int \left(Y|X
ight) \cdot g(Y|X) dY \qquad ext{(continue vars)}$

(示例)条件概率和条件期望的计算

			秀						Х,	每周	家庭収	ξλ (美元)									
		X	80	10)0	12	20	14	40	10	50	18	30	20	00	22	0	24	10	26	60	
	X	55	1/5	65	1/6	79	1/5	80	1/7	102	1/6	110	1/6	120	1/5	135	1/7	137	1/6	150	1/7	
	Υ.	60	1/5	70	1/6	84	1/5	93	1/7	107	1/6	115	1/6	136	1/5	137	1/7	145	1/6	152	1/7	
	配均	65	1/5	74	1/6	90	1/5	95	1/7	110	1/6	120	1/6	140	1/5	140	1/7	155	1/6	175	1/7	
4	家庭	70	1/5	80	1/6	94	1/5	103	1/7	116	1/6	130	1/6	144	1/5	152	1/7	165	1/6	178	1/7	
	消费	75	1/5	85	1/6	98	1/5	108	1/7	118	1/6	135	1/6	145	1/5	157	1/7	175	1/6	180	1/7	
	每周家庭消费支出	_	_	88	1/6	_	_	113	1/7	125	1/6	140	1/6	_	_	160	1/7	189	1/6	185	1/7	
		_	_	_	_	_	_	115	1/7	_	_	_	_	_	_	162	1/7	_	_	191	1/7	
	小计	325	1	462	1	445	1	708	1	678	1	750	1	685	_	1043	1	966	_	1211	1	
	条件期望	65		65 77		7	89		101		113		125		137		149		161		173	

条件概率和条件期望

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 17 / 54

(示例)条件期望的计算过程

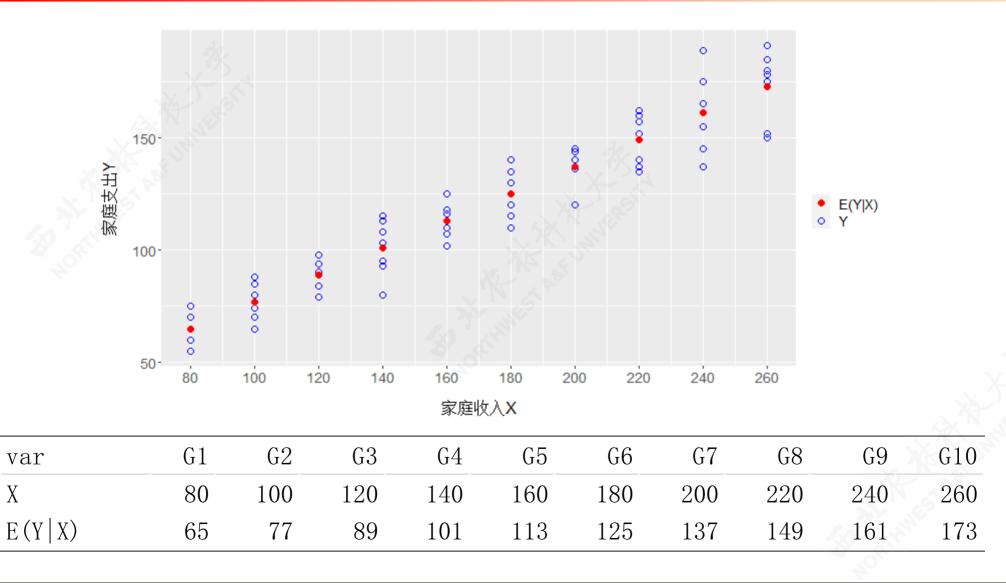
$$E(Y|80) = \sum_{1}^{N} Y_i \cdot P(Y_i|X = 80)$$

$$= \sum_{1}^{5} \left(55 * \frac{1}{5} + 60 * \frac{1}{5} + \cdots + 75 * \frac{1}{5}\right)$$

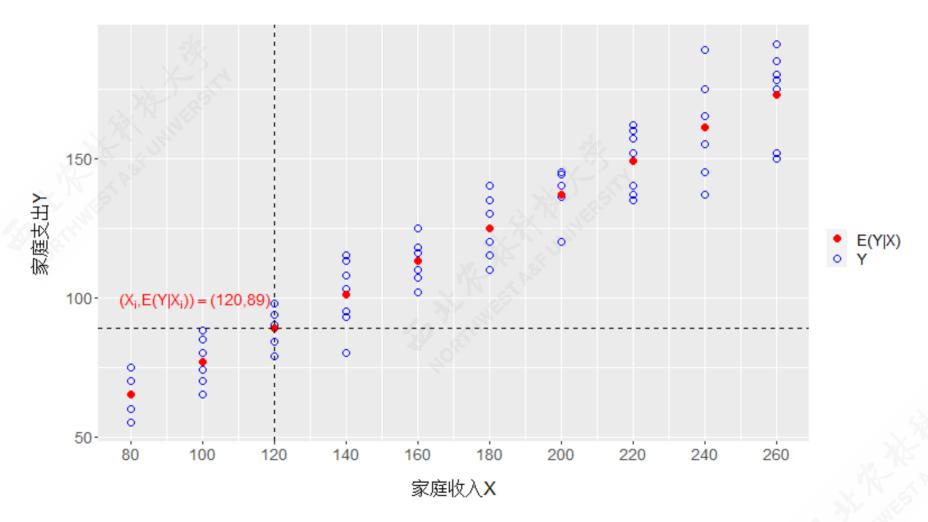

$$= \frac{1}{5} \sum_{1}^{5} Y_i$$

$$= \frac{325}{5}$$

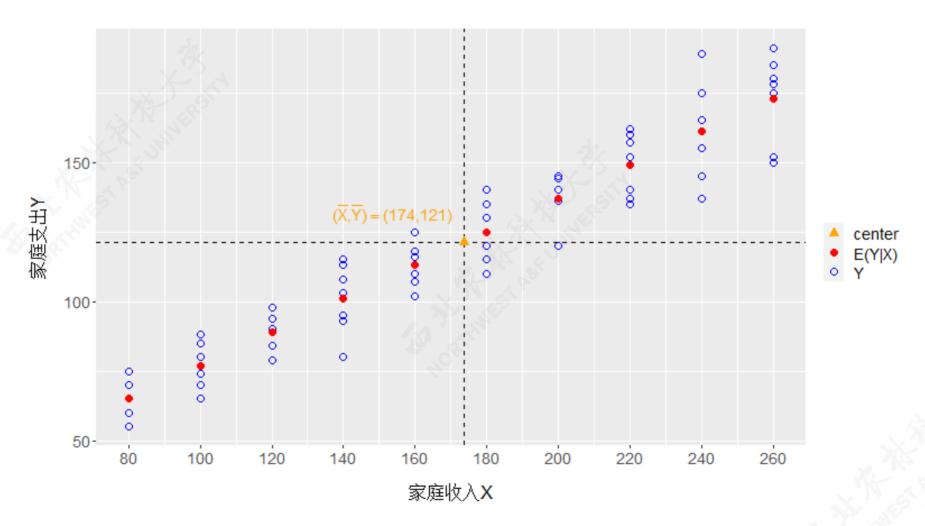
$$= 65$$


(示例)假想总体的全部数据展示

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 19 / 54



(示例)给定不同2水平下2条件期望值


(示例)给定不同2水平下2条件期望值

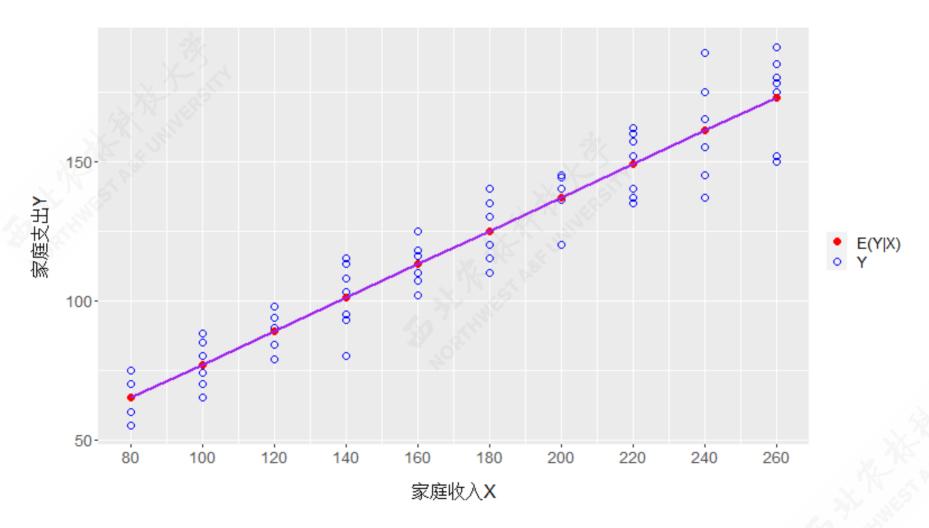
给定 X = 120水平下 Y条件期望值 $E(Y|X_i = 120)$ = 89

(示例) 化均值和4的无条件期望值

X的均值 \bar{X} =173.67和Y的无条件期望值 E(Y) = 121.20

重要概念:总体回归线 (PRL)

- 几何: 给定X值时Y的条件期望值的轨迹。
- 统计: 实质上就是Y对X的回归。


总体回归曲线(Population Regression Curve, PRC): 条件期望值的轨迹表现为一条曲线(Curve)。

总体回归线(Population Regression Line, PRL):条件期望值的轨迹表现为一条直线(Line)。

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 23 / 54

重要概念:总体回归线 (PRL)

总体回归线PRL

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 24 / 54

huhuaping@

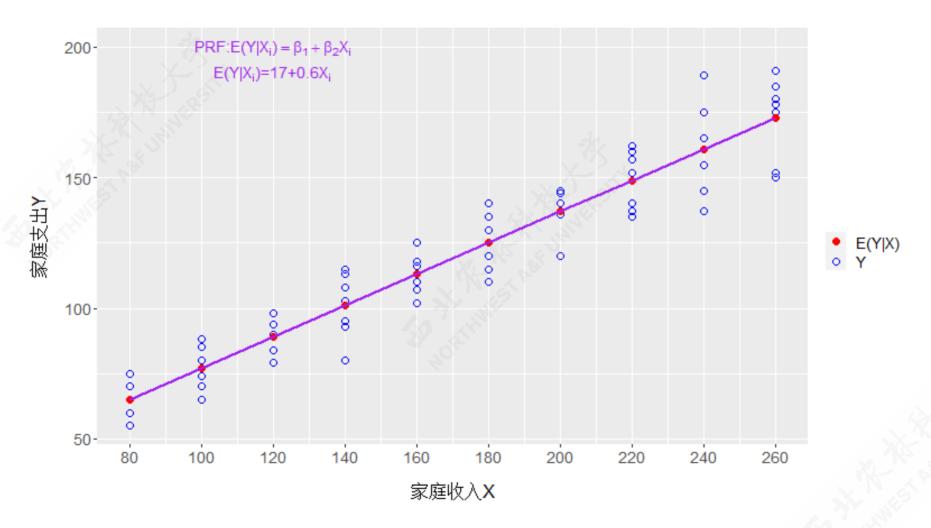
重要概念:总体回归函数 (PR4)

总体回归函数(Population Regression Function, PRF): 它是对总体回归曲 线(PRC)的数学函数表现形式。

如果不知道总体回归曲线的具体形式,则总体回归函数PRF表达为如下隐函数形 式 (PRF):

$$E(Y|X_i) = f(X_i)$$
 (PRF)

如果总体回归曲线是直线形式,则总体回归函数PRF表达为如下显函数形式 (PRF L):


$$E(Y|X_i) = \beta_1 + \beta_2 X_i$$
 (PRF_L)

5.2 回归分析的基本思想

- β_1, β_2 分别称为截距(intercept)和斜率系数(slope coefficient)。
- β_1, β_2 称为总体参数或回归系数(regression coefficients)。
- β_1, β_2 为未知但却是固定的参数。

重要概念:总体回归函数 (PR4)

总体回归线PRL与总体回归函数PR分

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 26 / 54

重要概念:总体回归模型 (PRM)

总体回归模型 (Population Regression model, PRM): 把总体回归函数表达成随机设定形式。

如果总体回归函数为隐函数,则总体回归模型记为:

$$egin{aligned} Y_i &= E(Y|X_i) + u_i \ &= f(X_i) + u_i \end{aligned}$$

如果总体回归函数为线性函数,则总体回归模型记为:

$$Y_i = E(Y|X_i) + u_i \ = eta_1 + eta_2 X_i + u_i$$

- 总体回归模型 (PRM) 属于计量经济学模型,而总体回归函数 (PRF) 是数量经济学模型 (或数学模型)。
- 总体回归模型 (PRM) 能充分表达的是现实世界中 Y_i 变量的行为特征。

重要概念:随机干扰项

总体回归模型 (PRM) 设定下, Y_i 将由两个部分组成。

- 特定家庭的支出 (Y_i) = 系统性部分 ($E(Y|X_i)$ + 随机部分 (u_i)
- 特定家庭的支出 (Y_i) = 系统性部分 ($\beta_1 + \beta_2 X_i$) + 随机部分 (u_i)

随机干扰项:

• 也被称为随机误差项(stochastic error term): 总体回归函数中忽略掉的 但又影响着Y的全部变量的替代物,它是 Y_i 与条件期望($E(Y|X_i)$)的离 差。

$$u_i = Y_i - E(Y|X_i)$$

重要概念:随机干扰项

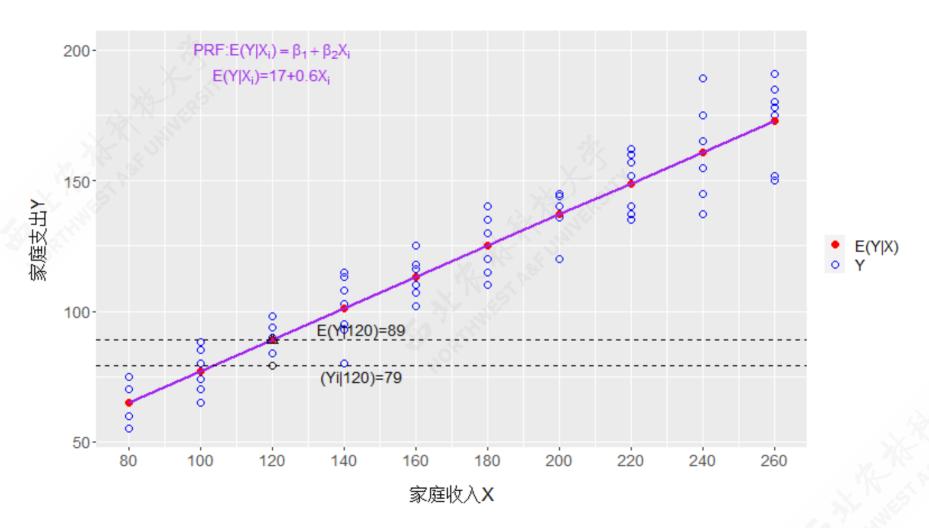
随机干扰项的来源:

- 理论的含糊:除了主变量之外,还有其它变量的影响,但不清楚,只能用 μ_i 代替它 们。(家庭收入以外?)
- 数据的不充分: 可能知道被忽略的变量,但不能得到这些变量的数量信息。(如家庭 财富数据不可得)
- 核心变量与其它变量: 其它变量全部或其中一些合起来影响还是很小的。(如子女、 教育、性别、宗教等)
- 人类行为的内在随机性。(客观存在、固有的)
- 变量被"移花接木"而产生测量误差(如弗里德曼的持久收入和消费)
- 节省原则: 为了保持一个尽可能简单的回归模型
- 错误的函数形式: 有时根据数据及经验无法确定一个正确的函数形式 (多元回归尤 其如此)

第05章 相关和回归分析 5.2 回归分析的基本思想 29 / 54

重要概念:随机干扰项

为何是"随机的"?


- 测不准? (误差)
- 测错了? (误导)
- 免不了! (内在性)

拥抱随机世界

- 风筝: Y_i
- 风筝线: $E(Y|X_i)$
- 风: *u*.

重要概念:理解PRM和PR分的关系

若给定一个特定家庭 $(X_i = 120, Y_i = 79)$,则条件期望为 E(Y|120) = 89

重要概念:理解PRM和PR分的关系

若给定 $X_i = 120$, 则5个家庭的真实消费支出分别为:

$$(Y_1|X=120)=79=eta_1+eta_2\cdot 120+u_1\ (Y_2|X=120)=84=eta_1+eta_2\cdot 120+u_2\ (Y_3|X=120)=90=eta_1+eta_2\cdot 120+u_3\ (Y_4|X=120)=94=eta_1+eta_2\cdot 120+u_4\ (Y_5|X=120)=98=eta_1+eta_2\cdot 120+u_5$$

重要概念:理解PRM和PR分的关系

主要结论:

- 总体期望刻画总体的"趋势",总体回归线让"趋势"直观化。
- 个体随机性是不可避免的,总会"游离"于"趋势"之外。
- 随机干扰项 u_i i携带了随机个体的"游离"信息。
- 总体回归模型既"提取"了趋势和规律性,又"维系"着个体随机性,从而更好地表 达了"真实世界"。

课后思考:

- 如果是无限总体,总体的规律性在理论上也是可以被严格表达出来么?
- 如果不告诉你总体, 你怎么知道"触碰"到的是"真实的"趋势/规律?
- 从假想的60个家庭的微型总体中,"随便"抽取10个家庭的数据,你还能看到"直 线"趋势么?

重要概念:"线性"的含义

- "线性回归模型"中"线性"一词的含义
 - 变量"线性"模型: 因变量对于自变量是线性的。
 - 参数"线性"模型: 因变量对于参数是线性的。

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 34 / 54

(测试题)"线性"的含义

下列模型分别属于哪一类?请指出来:

$$Y_i = eta_1 + eta_2 X_i + u_i \pmod 1 \ Y_i = eta_1 + eta_2 X_i + eta_3 X_i^2 + u_i \pmod 2 \ Y_i = eta_1 + eta_2 X_i + eta_3 X_i^2 + eta_4 X_i^3 + u_i \pmod 3 \ Y_i = eta_1 + eta_2 rac{1}{X_i} + u_i \pmod 4 \ Y_i = eta_1 + eta_2 ln(X_i) + u_i \pmod 5 \ ln(Y_i) = eta_1 + eta_2 X_i + u_i \pmod 6$$

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 35 / 54

(测试题)"线性"的含义

下列模型分别属于哪一类?请指出来:

$$ln(Y_i) = eta_1 - eta_2 rac{1}{X_i} + u_i \pmod{7}$$
 $ln(Y_i) = ln(eta_1) + eta_2 ln(X_i) + u_i \pmod{8}$ $Y_i = rac{1}{1 + e^{(eta_1 + eta_2 X_{2i} + u_i)}} \pmod{9}$ $Y_i = eta_1 + (0.75 - eta_1)e^{-eta_2(X_i - 2)} + u_i \pmod{10}$ $Y_i = eta_1 + eta_2^3 X_i + u_i \pmod{11}$

重要概念:样本回归线(SRL)

样本(Sample):

• 从总体中随机抽取得到的数据。

样本回归线(Sample Regression Line, SRL):

- 是通过拟合样本数据得到的一条曲线(或直线)。换言之,这条线由拟合值 \hat{Y}_i 连接 而成。
- \hat{Y}_i 是对条件期望值 $Y|X_i$ 的拟合。
- 拟合方法有很多,例如采用0LS方法对样本数据进行拟合。
 - 尽可能拟合数据
 - 用什么方法拟合?
 - 曲线是什么形态?

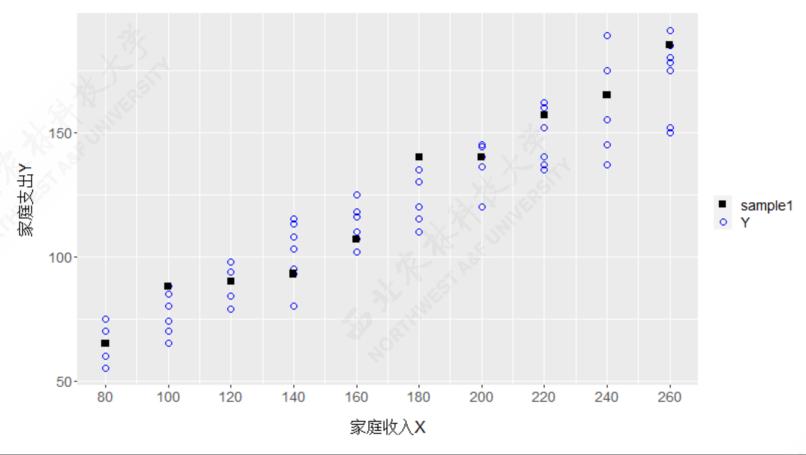
第05章 相关和回归分析 37 / 54 huhuaping@ 5.2 回归分析的基本思想

重要概念:样本回归函数(SR4)

样本回归函数(Sample Regression Function, SRF): 是样本回归曲线的数学函 数形式,可是是线性的或非线性。如果是直线则可以写成:

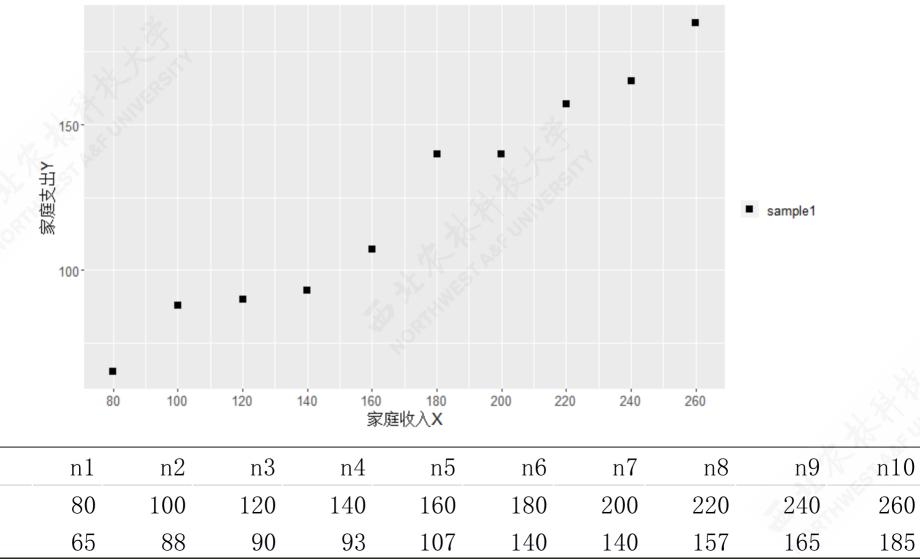
$${\hat Y}_i = {\hat eta}_1 + {\hat eta}_2 X_i$$

对比总体回归函数 (PRF):


$$E(Y|X_i) = \beta_1 + \beta_2 X_i$$

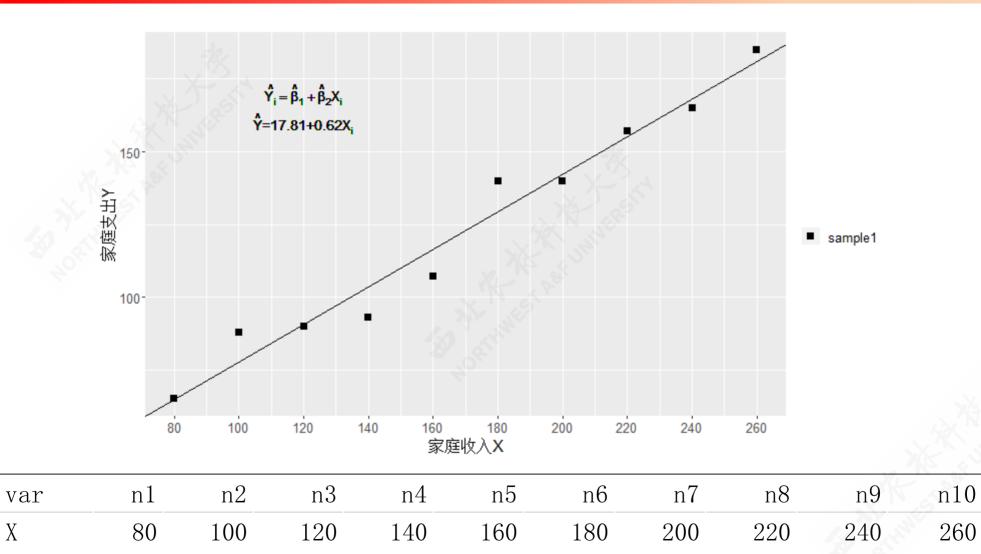
可以认为:

- \hat{Y}_i 是对 $E(Y|X_i)$ 的估计量。
- $\hat{\beta}_1$ 是对 β_1 的估计量。
- $\hat{\beta}_2$ 是对 β_2 的估计量。


(示例)第一份随机样本:抽样

var	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10
X	80	100	120	140	160	180	200	220	240	260
Y	65	88	90	93	107	140	140	157	165	185

(示例)第一份随机样本:数据


huhuaping@ 第05章 相关和回归分析

var

X

(示例)第一份随机样本:SRL

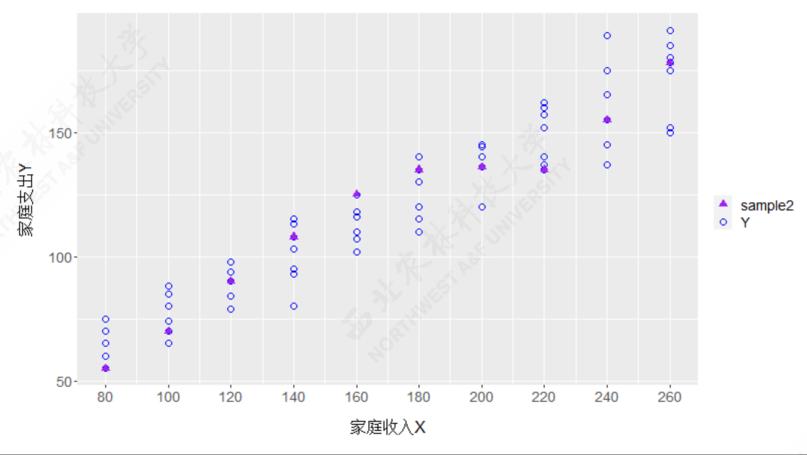
huhuaping@ 第05章 相关和回归分析

X

(示例)第一份随机样本:SRA

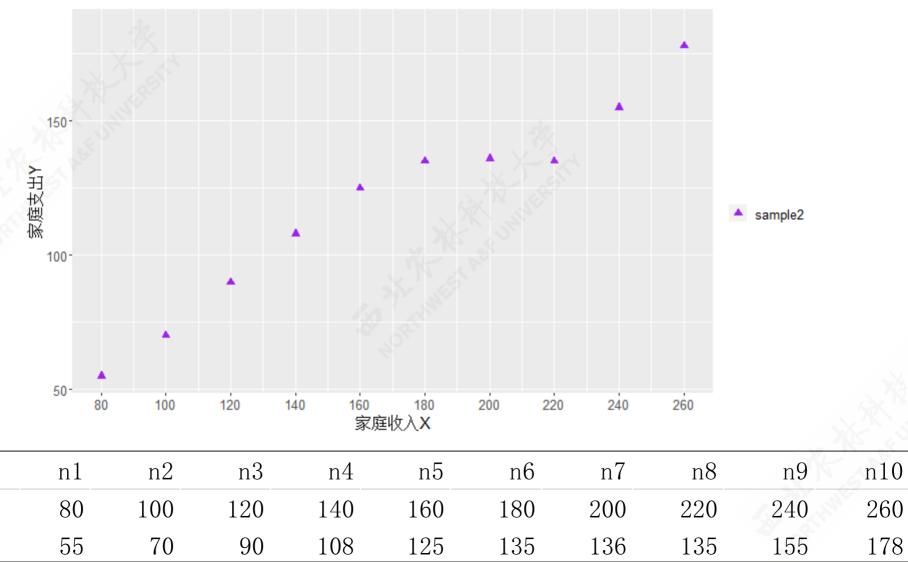
根据第一份随机样本拟合得到的样本回归函数SRF:

$$\hat{Y} = +13.38 + 0.64X$$

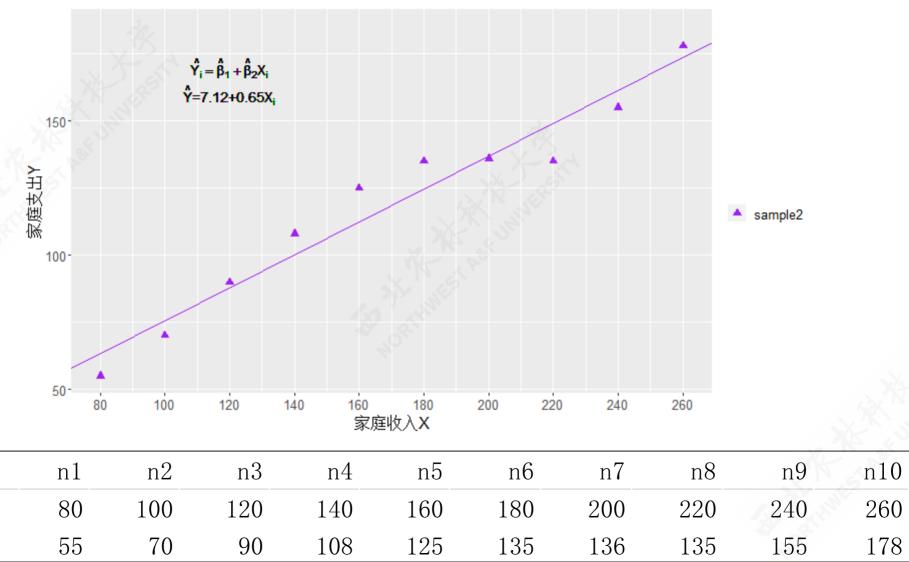

样本数据如下:

var	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10
X	80	100	120	140	160	180	200	220	240	260
Y	65	88	90	93	107	140	140	157	165	185

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 42 / 54


(示例)第二份随机样本:抽样

var	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10
X	80	100	120	140	160	180	200	220	240	260
Y	55	70	90	108	125	135	136	135	155	178


(示例)第二份随机样本:数据

var

(示例)第二份随机样本:SRL

第05章 相关和回归分析 5. 2 回归分析的基本思想 45 54 54 54 54 54 64 65 65 65 65 65 66 66 67 68 68 69 69 69 69 60 69 60 70 \phantom

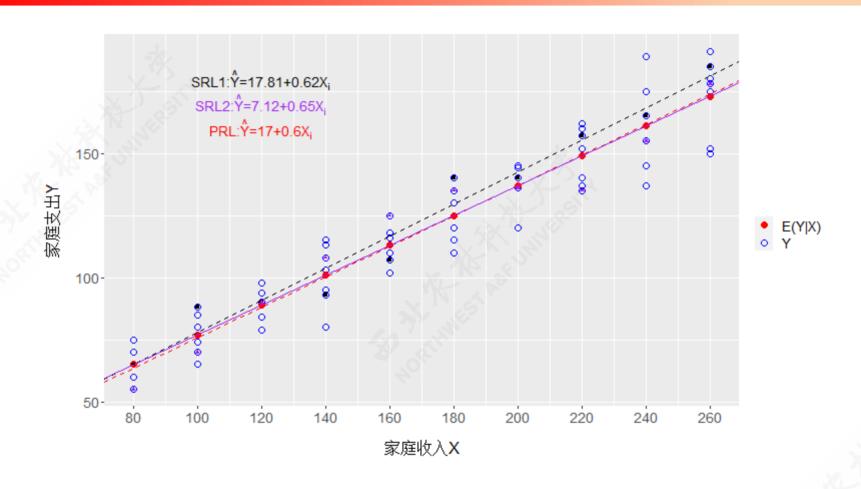
var

X

(示例)第二份随机样本:SRA

根据第二份随机样本拟合得到的样本回归函数SRF:

$$\hat{Y} = +14.59 + 0.61X$$


样本数据如下:

						/////				
var	n1	n2	n3	n4	n5	n6	n7	n8	n9	n10
X	80	100	120	140	160	180	200	220	240	260
Y	55	70	90	108	125	135	136	135	155	178

huhuaping@ 第05章 相关和回归分析 5.2 回归分析的基本思想 46 / 54

(示例)两份样本同时出现

重要概念:样本回归模型(SRM)

样本回归模型 (Sample Regression Model, SRM): 把样本回归函数表现为"随机"形式。

• 如果样本回归函数为隐函数,则样本回归模型可记为:

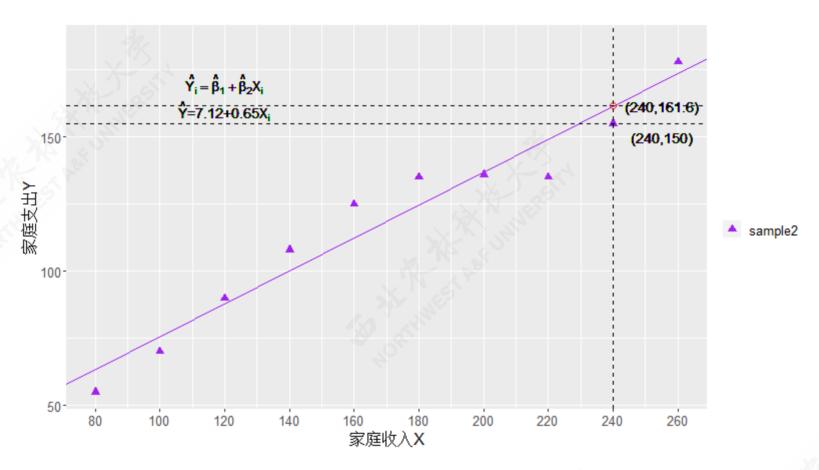
$$Y_i = g(X_i) + e_i$$

• 如果样本回归函数表现为直线,则样本回归模型可记为:

$$Y_i = \hat{eta}_1 + \hat{eta}_2 X_i + e_i$$
 (SRM_L)

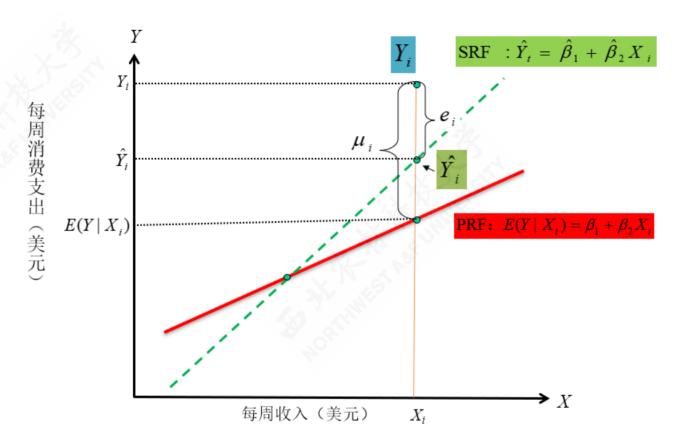
其中, e_i 表示残差(Residual)

重要概念:残差


残差 (Residual):

- 定义: 是样本回归函数与Y的样本观测值之间的离差。
- 记号:

$$egin{aligned} e_i &= Y_i - \hat{Y}_i \ &= Y_i - (\hat{eta}_1 + \hat{eta}_2 X_i) \end{aligned}$$


重要概念:理解SRA和SRM的关系

给定 $x_i = 240$,样本2的观测值 $Y_i = 240$; 拟合值 $\hat{Y}_i = 161.6$; 残差 $e_i = Y_i - \hat{Y}_i = -6.6$ 。

重要概念:样本回归与总体回归的比较

为何不同?继承性和变异性

重要概念:样本回归与总体回归的比较

总体回归函数PRF:

$$E(Y|X_i) = \beta_1 + \beta_2 X_i$$
 (PRF)

总体回归模型PRM:

$$Y_i = \beta_1 + \beta_2 X_i + u_i \qquad (PRM)$$

思考:

- PRF无法直接观测,只能用SRF近似替代
- 估计值与观测值之间存在偏差
- SRF又是怎样决定的呢?

样本回归函数SRF:

$$\hat{Y}_i = \hat{eta}_1 + \hat{eta}_2 X_i$$
 (SRF)

样本回归模型SRM:

$$Y_i = \hat{eta}_1 + \hat{eta}_2 X_i + e_i$$
 (SRM)

重要概念:样本回归与总体回归的比较

总结:

- 随机抽样数据继承了总体的特征。
- 利用随机样本进行数据拟合是对总体规律的"反向追踪"。
- 样本回归模型中的残差是拟合不完全的产物。

思考:

- 怎样来判定对随机样本的一次数据拟合是更优的?
- 存不存在一种"最优"的拟合方法?

课后作业:

- 请把162名同学的拟合线进行平均化处理(截距和斜率取均值),绘制得到一条"回归线"。
- 你认为是这根平均化的"回归线"与真相更逼近么?

本节结束

