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To my son, Miles, one of my favorite people.

I love you. You’ve tagged my head and heart.
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Introduction

My path to economics was not linear. I didn’t major in economics, for
instance. I didn’t even take an economics course in college. I
majored in English, for Pete’s sake. My ambition was to become a
poet. But then I became intrigued with the idea that humans can
form plausible beliefs about causal effects even without a
randomized experiment. Twenty-five years ago, I wouldn’t have had
a clue what that sentence even meant, let alone how to do such an
experiment. So how did I get here? Maybe you would like to know
how I got to the point where I felt I needed to write this book. The
TL;DR version is that I followed a windy path from English to causal
inference.1 First, I fell in love with economics. Then I fell in love with
empirical research. Then I noticed that a growing interest in causal
inference had been happening in me the entire time. But let me tell
the longer version.

I majored in English at the University of Tennessee at Knoxville
and graduated with a serious ambition to become a professional
poet. But, while I had been successful writing poetry in college, I
quickly realized that finding the road to success beyond that point
was probably not realistic. I was newly married, with a baby on the
way, and working as a qualitative research analyst doing market
research. Slowly, I had stopped writing poetry altogether.2

My job as a qualitative research analyst was eye opening, in part
because it was my first exposure to empiricism. My job was to do
“grounded theory”—a kind of inductive approach to generating
explanations of human behavior based on observations. I did this by
running focus groups and conducting in-depth interviews, as well as
through other ethnographic methods. I approached each project as
an opportunity to understand why people did the things they did
(even if what they did was buy detergent or pick a cable provider).



While the job inspired me to develop my own theories about human
behavior, it didn’t provide me a way of falsifying those theories.

I lacked a background in the social sciences, so I would spend my
evenings downloading and reading articles from the Internet. I don’t
remember how I ended up there, but one night I was on the
University of Chicago Law and Economics working paper series
website when a speech by Gary Becker caught my eye. It was his
Nobel Prize acceptance speech on how economics applies to all of
human behavior [Becker, 1993], and reading it changed my life. I
thought economics was about stock markets and banks until I read
that speech. I didn’t know economics was an engine that one could
use to analyze all of human behavior. This was overwhelmingly
exciting, and a seed had been planted.

But it wasn’t until I read an article on crime by Lott and Mustard
[1997] that I became truly enamored of economics. I had no idea that
there was an empirical component where economists sought to
estimate causal effects with quantitative data. A coauthor of that
paper was David Mustard, then an associate professor of economics
at the University of Georgia, and one of Gary Becker’s former
students. I decided that I wanted to study with Mustard, and so I
applied to the University of Georgia’s doctoral program in
economics. I moved to Athens, Georgia, with my wife, Paige, and
our infant son, Miles, and started classes in the fall of 2002.

After passing my first-year comprehensive exams, I took Mustard’s
labor economics field class and learned about a variety of topics that
would shape my interests for years. These topics included the
returns to education, inequality, racial discrimination, crime, and
many other fascinating topics in labor. We read many, many
empirical papers in that class, and afterwards I knew that I would
need a strong background in econometrics to do the kind of research
I cared about. In fact, I decided to make econometrics my main field
of study. This led me to work with Christopher Cornwell, an
econometrician and labor economist at Georgia. I learned a lot from
Chris, both about econometrics and about research itself. He
became a mentor, coauthor, and close friend.



Econometrics was difficult. I won’t even pretend I was good at it. I
took all the econometrics courses offered at the University of
Georgia, some more than once. They included classes covering
topics like probability and statistics, cross-sections, panel data, time
series, and qualitative dependent variables. But while I passed my
field exam in econometrics, I struggled to understand econometrics
at a deep level. As the saying goes, I could not see the forest for the
trees. Something just wasn’t clicking.

I noticed something, though, while I was writing the third chapter of
my dissertation that I hadn’t noticed before. My third chapter was an
investigation of the effect of abortion legalization on the cohort’s
future sexual behavior [Cunningham and Cornwell, 2013]. It was a
revisiting of Donohue and Levitt [2001]. One of the books I read in
preparation for my study was Levine [2004], which in addition to
reviewing the theory of and empirical studies on abortion had a little
table explaining the difference-in-differences identification strategy.
The University of Georgia had a traditional econometrics pedagogy,
and most of my field courses were theoretical (e.g., public
economics, industrial organization), so I never really had heard the
phrase “identification strategy,” let alone “causal inference.” Levine’s
simple difference-in-differences table for some reason opened my
eyes. I saw how econometric modeling could be used to isolate the
causal effects of some treatment, and that led to a change in how I
approach empirical problems.

What Is Causal Inference?
My first job out of graduate school was as an assistant professor at
Baylor University in Waco, Texas, where I still work and live today. I
was restless the second I got there. I could feel that econometrics
was indispensable, and yet I was missing something. But what? It
was a theory of causality. I had been orbiting that theory ever since
seeing that difference-in-differences table in Levine [2004]. But I
needed more. So, desperate, I did what I always do when I want to
learn something new—I developed a course on causality to force
myself to learn all the things I didn’t know.



I named the course Causal Inference and Research Design and
taught it for the first time to Baylor master’s students in 2010. At the
time, I couldn’t really find an example of the sort of class I was
looking for, so I cobbled together a patchwork of ideas from several
disciplines and authors, like labor economics, public economics,
sociology, political science, epidemiology, and statistics. You name it.
My class wasn’t a pure econometrics course; rather, it was an
applied empirical class that taught a variety of contemporary
research designs, such as difference-in-differences, and it was filled
with empirical replications and readings, all of which were built on
the robust theory of causality found in Donald Rubin’s work as well
as the work of Judea Pearl. This book and that class are in fact very
similar to one another.3

So how would I define causal inference? Causal inference is the
leveraging of theory and deep knowledge of institutional details to
estimate the impact of events and choices on a given outcome of
interest. It is not a new field; humans have been obsessing over
causality since antiquity. But what is new is the progress we believe
we’ve made in estimating causal effects both inside and outside the
laboratory. Some date the beginning of this new, modern causal
inference to Fisher [1935], Haavelmo [1943], or Rubin [1974]. Some
connect it to the work of early pioneers like John Snow. We should
give a lot of credit to numerous highly creative labor economists from
the late 1970s to late 1990s whose ambitious research agendas
created a revolution in economics that continues to this day. You
could even make an argument that we owe it to the Cowles
Commission, Philip and Sewall Wright, and the computer scientist
Judea Pearl.

But however you date its emergence, causal inference has now
matured into a distinct field, and not surprisingly, you’re starting to
see more and more treatments of it as such. It’s sometimes reviewed
in a lengthy chapter on “program evaluation” in econometrics
textbooks [Wooldridge, 2010], or even given entire book-length
treatments. To name just a few textbooks in the growing area, there’s
Angrist and Pischke [2009], Morgan and Winship [2014], Imbens and



Rubin [2015], and probably a half dozen others, not to mention
numerous, lengthy treatments of specific strategies, such as those
found in Angrist and Krueger [2001] and Imbens and Lemieux
[2008]. The market is quietly adding books and articles about
identifying causal effects with data all the time.

So why does Causal Inference: The Mixtape exist? Well, to put it
bluntly, a readable introductory book with programming examples,
data, and detailed exposition didn’t exist until this one. My book is an
effort to fill that hole, because I believe what researchers really need
is a guide that takes them from knowing almost nothing about causal
inference to a place of competency. Competency in the sense that
they are conversant and literate about what designs can and cannot
do. Competency in the sense that they can take data, write code
and, using theoretical and contextual knowledge, implement a
reasonable design in one of their own projects. If this book helps
someone do that, then this book will have had value, and that is all I
can and should hope for.

But what books out there do I like? Which ones have inspired this
book? And why don’t I just keep using them? For my classes, I
mainly relied on Morgan and Winship [2014], Angrist and Pischke
[2009], as well as a library of theoretical and empirical articles.
These books are in my opinion definitive classics. But they didn’t
satisfy my needs, and as a result, I was constantly jumping between
material. Other books were awesome but not quite right for me
either. Imbens and Rubin [2015] cover the potential outcomes model,
experimental design, and matching and instrumental variables, but
not directed acyclic graphical models (DAGs), regression
discontinuity, panel data, or synthetic control. Morgan and Winship
[2014] cover DAGs, the potential outcomes model, and instrumental
variables, but have too light a touch on regression discontinuity and
panel data for my tastes. They also don’t cover synthetic control,
which has been called the most important innovation in causal
inference of the last 15 years by Athey and Imbens [2017b]. Angrist
and Pischke [2009] is very close to what I need but does not include
anything on synthetic control or on the graphical models that I find so
critically useful. But maybe most importantly, Imbens and Rubin



[2015], Angrist and Pischke [2009], and Morgan and Winship [2014]
do not provide any practical programming guidance, and I believe it
is in replication and coding that we gain knowledge in these areas.4

This book was written with a few different people in mind. It was
written first and foremost for practitioners, which is why it includes
easy-to-download data sets and programs. It’s why I have made
several efforts to review papers as well as replicate the models as
much as possible. I want readers to understand this field, but as
important, I want them to feel empowered so that they can use these
tools to answer their own research questions.

Another person I have in mind is the experienced social scientist
who wants to retool. Maybe these are people with more of a
theoretical bent or background, or maybe they’re people who simply
have some holes in their human capital. This book, I hope, can help
guide them through the modern theories of causality so common in
the social sciences, as well as provide a calculus in directed acyclic
graphical models that can help connect their knowledge of theory
with estimation. The DAGs in particular are valuable for this group, I
think.

A third group that I’m focusing on is the nonacademic person in
industry, media, think tanks, and the like. Increasingly, knowledge
about causal inference is expected throughout the professional
world. It is no longer simply something that academics sit around
and debate. It is crucial knowledge for making business decisions as
well as for interpreting policy.

Finally, this book is written for people very early in their careers, be
they undergraduates, graduate students, or newly minted PhDs. My
hope is that this book can give them a jump start so that they don’t
have to meander, like many of us did, through a somewhat
labyrinthine path to these methods.

Do Not Confuse Correlation with Causality
It is very common these days to hear someone say “correlation does
not mean causality.” Part of the purpose of this book is to help
readers be able to understand exactly why correlations, particularly



in observational data, are unlikely to be reflective of a causal
relationship. When the rooster crows, the sun soon after rises, but
we know the rooster didn’t cause the sun to rise. Had the rooster
been eaten by the farmer’s cat, the sun still would have risen. Yet so
often people make this kind of mistake when naively interpreting
simple correlations.

But weirdly enough, sometimes there are causal relationships
between two things and yet no observable correlation. Now that is
definitely strange. How can one thing cause another thing without
any discernible correlation between the two things? Consider this
example, which is illustrated in Figure 1. A sailor is sailing her boat
across the lake on a windy day. As the wind blows, she counters by
turning the rudder in such a way so as to exactly offset the force of
the wind. Back and forth she moves the rudder, yet the boat follows
a straight line across the lake. A kindhearted yet naive person with
no knowledge of wind or boats might look at this woman and say,
“Someone get this sailor a new rudder! Hers is broken!” He thinks
this because he cannot see any relationship between the movement
of the rudder and the direction of the boat.



Figure 1. No correlation doesn’t mean no causality. Artwork by Seth Hahne
© 2020.

But does the fact that he cannot see the relationship mean there
isn’t one? Just because there is no observable relationship does not
mean there is no causal one. Imagine that instead of perfectly
countering the wind by turning the rudder, she had instead flipped a
coin—heads she turns the rudder left, tails she turns the rudder right.
What do you think this man would have seen if she was sailing her
boat according to coin flips? If she randomly moved the rudder on a
windy day, then he would see a sailor zigzagging across the lake.
Why would he see the relationship if the movement were
randomized but not be able to see it otherwise? Because the sailor is
endogenously moving the rudder in response to the unobserved
wind. And as such, the relationship between the rudder and the
boat’s direction is canceled—even though there is a causal
relationship between the two.

This sounds like a silly example, but in fact there are more serious
versions of it. Consider a central bank reading tea leaves to discern



when a recessionary wave is forming. Seeing evidence that a
recession is emerging, the bank enters into open-market operations,
buying bonds and pumping liquidity into the economy. Insofar as
these actions are done optimally, these open-market operations will
show no relationship whatsoever with actual output. In fact, in the
ideal, banks may engage in aggressive trading in order to stop a
recession, and we would be unable to see any evidence that it was
working even though it was!

Human beings engaging in optimal behavior are the main reason
correlations almost never reveal causal relationships, because rarely
are human beings acting randomly. And as we will see, it is the
presence of randomness that is crucial for identifying causal effect.

Optimization Makes Everything Endogenous
Certain presentations of causal inference methodologies have
sometimes been described as atheoretical, but in my opinion, while
some practitioners seem comfortable flying blind, the actual methods
employed in causal designs are always deeply dependent on theory
and local institutional knowledge. It is my firm belief, which I will
emphasize over and over in this book, that without prior knowledge,
estimated causal effects are rarely, if ever, believable. Prior
knowledge is required in order to justify any claim of a causal finding.
And economic theory also highlights why causal inference is
necessarily a thorny task. Let me explain.

There’s broadly thought to be two types of data. There’s
experimental data and non-experimental data. The latter is also
sometimes called observational data. Experimental data is collected
in something akin to a laboratory environment. In a traditional
experiment, the researcher participates actively in the process being
recorded. It’s more difficult to obtain data like this in the social
sciences due to feasibility, financial cost, or moral objections,
although it is more common now than was once the case. Examples
include the Oregon Medicaid Experiment, the RAND health
insurance experiment, the field experiment movement inspired by



Esther Duflo, Michael Kremer, Abhijit Banerjee, and John List, and
many others.

Observational data is usually collected through surveys in a
retrospective manner, or as the by-product of some other business
activity (“big data”). In many observational studies, you collect data
about what happened previously, as opposed to collecting data as it
happens, though with the increased use of web scraping, it may be
possible to get observational data closer to the exact moment in
which some action occurred. But regardless of the timing, the
researcher is a passive actor in the processes creating the data
itself. She observes actions and results but is not in a position to
interfere with the environment in which the units under consideration
exist. This is the most common form of data that many of us will ever
work with.

Economic theory tells us we should be suspicious of correlations
found in observational data. In observational data, correlations are
almost certainly not reflecting a causal relationship because the
variables were endogenously chosen by people who were making
decisions they thought were best. In pursuing some goal while facing
constraints, they chose certain things that created a spurious
correlation with other things. And we see this problem reflected in
the potential outcomes model itself: a correlation, in order to be a
measure of a causal effect, must be based on a choice that was
made independent of the potential outcomes under consideration.
Yet if the person is making some choice based on what she thinks is
best, then it necessarily is based on potential outcomes, and the
correlation does not remotely satisfy the conditions we need in order
to say it is causal. To put it as bluntly as I can, economic theory says
choices are endogenous, and therefore since they are, the
correlations between those choices and outcomes in the aggregate
will rarely, if ever, represent a causal effect.

Now we are veering into the realm of epistemology. Identifying
causal effects involves assumptions, but it also requires a particular
kind of belief about the work of scientists. Credible and valuable
research requires that we believe that it is more important to do our
work correctly than to try and achieve a certain outcome (e.g.,



confirmation bias, statistical significance, asterisks). The foundations
of scientific knowledge are scientific methodologies. True scientists
do not collect evidence in order to prove what they want to be true or
what others want to believe. That is a form of deception and
manipulation called propaganda, and propaganda is not science.
Rather, scientific methodologies are devices for forming a particular
kind of belief. Scientific methodologies allow us to accept
unexpected, and sometimes undesirable, answers. They are process
oriented, not outcome oriented. And without these values, causal
methodologies are also not believable.

Example: Identifying Price Elasticity of Demand
One of the cornerstones of scientific methodologies is empirical
analysis.5 By empirical analysis, I mean the use of data to test a
theory or to estimate a relationship between variables. The first step
in conducting an empirical economic analysis is the careful
formulation of the question we would like to answer. In some cases,
we would like to develop and test a formal economic model that
describes mathematically a certain relationship, behavior, or process
of interest. Those models are valuable insofar as they both describe
the phenomena of interest and make falsifiable (testable)
predictions. A prediction is falsifiable insofar as we can evaluate, and
potentially reject, the prediction with data.6 A model is the framework
with which we describe the relationships we are interested in, the
intuition for our results, and the hypotheses we would like to test.7

After we have specified a model, we turn it into what is called an
econometric model, which can be estimated directly with data. One
clear issue we immediately face is regarding the functional form of
the model, or how to describe the relationships of the variables we
are interested in through an equation. Another important issue is
how we will deal with variables that cannot be directly or reasonably
observed by the researcher, or that cannot be measured very well,
but which play an important role in our model.

A generically important contribution to our understanding of causal
inference is the notion of comparative statics. Comparative statics



are theoretical descriptions of causal effects contained within the
model. These kinds of comparative statics are always based on the
idea of ceteris paribus—or “all else constant.” When we are trying to
describe the causal effect of some intervention, for instance, we are
always assuming that the other relevant variables in the model are
not changing. If they were changing, then they would be correlated
with the variable of interest and it would confound our estimation.8

To illustrate this idea, let’s begin with a basic economic model:
supply and demand equilibrium and the problems it creates for
estimating the price elasticity of demand. Policy-makers and
business managers have a natural interest in learning the price
elasticity of demand because knowing it enables firms to maximize
profits and governments to choose optimal taxes, and whether to
restrict quantity altogether [Becker et al., 2006]. But the problem is
that we do not observe demand curves, because demand curves are
theoretical objects. More specifically, a demand curve is a collection
of paired potential outcomes of price and quantity. We observe price
and quantity equilibrium values, not the potential price and potential
quantities along the entire demand curve. Only by tracing out the
potential outcomes along a demand curve can we calculate the
elasticity.

To see this, consider this graphic from Philip Wright’s Appendix B
[Wright, 1928], which we’ll discuss in greater detail later (Figure 2).
The price elasticity of demand is the ratio of percentage changes in
quantity to price for a single demand curve. Yet, when there are
shifts in supply and demand, a sequence of quantity and price pairs
emerges in history that reflect neither the demand curve nor the
supply curve. In fact, connecting the points does not reflect any
meaningful or useful object.



Figure 2. Wright’s graphical demonstration of the identification problem.
Figure from Wright, P. G. (1928). The Tariff on Animal and Vegetable Oils. The
Macmillan Company.

The price elasticity of demand is the solution to the following
equation:

But in this example, the change in P is exogenous. For instance, it
holds supply fixed, the prices of other goods fixed, income fixed,
preferences fixed, input costs fixed, and so on. In order to estimate
the price elasticity of demand, we need changes in P that are
completely and utterly independent of the otherwise normal
determinants of supply and the other determinants of demand.
Otherwise we get shifts in either supply or demand, which creates



new pairs of data for which any correlation between P and Q will not
be a measure of the elasticity of demand.

The problem is that the elasticity is an important object, and we
need to know it, and therefore we need to solve this problem. So
given this theoretical object, we must write out an econometric model
as a starting point. One possible example of an econometric model
would be a linear demand function:

where α is the intercept, δ is the elasticity of demand, X is a matrix of
factors that determine demand like the prices of other goods or
income, γ is the coefficient on the relationship between X and Qd,
and u is the error term.9

Foreshadowing the content of this mixtape, we need two things to
estimate price elasticity of demand. First, we need numerous rows of
data on price and quantity. Second, we need for the variation in price
in our imaginary data set to be independent of u. We call this kind of
independence exogeneity. Without both, we cannot recover the price
elasticity of demand, and therefore any decision that requires that
information will be based on stabs in the dark.

Conclusion
This book is an introduction to research designs that can recover
causal effects. But just as importantly, it provides you with hands-on
practice to implement these designs. Implementing these designs
means writing code in some type of software. I have chosen to
illustrate these designs using two popular software languages: Stata
(most commonly used by economists) and R (most commonly used
by everyone else).

The book contains numerous empirical exercises illustrated in the
Stata and R programs. These exercises are either simulations
(which don’t need external data) or exercises requiring external data.
The data needed for the latter have been made available to you at
Github. The Stata examples will download files usually at the start of



the program using the following command: use
github.com/scunning1975/mixtape/raw/master/DATAFILENAME.DTA
, where DATAFILENAME.DTA is the name of a particular data set.

For R users, it is a somewhat different process to load data into
memory. In an effort to organize and clean the code, my students
Hugo Sant’Anna and Terry Tsai created a function to simplify the
data download process. This is partly based on a library called
haven, which is a package for reading data files. It is secondly based
on a set of commands that create a function that will then download
the data directly from Github.10

Some readers may not be familiar with either Stata or R but
nonetheless wish to follow along. I encourage you to use this
opportunity to invest in learning one or both of these languages. It is
beyond the scope of this book to provide an introduction to these
languages, but fortunately, there are numerous resources online. For
instance, Christopher Baum has written an excellent introduction to
Stata at https://fmwww.bc.edu/GStat/docs/StataIntro.pdf. Stata is
popular among microeconomists, and given the amount of
coauthoring involved in modern economic research, an argument
could be made for investing in it solely for its ability to solve basic
coordination problems between you and potential coauthors. But a
downside to Stata is that it is proprietary and must be purchased.
And for some people, that may simply be too big of a barrier—
especially for anyone simply wanting to follow along with the book. R
on the other hand is open-source and free. Tutorials on Basic R can
be found at https://cran.r-project.org/doc/contrib/Paradis-
rdebuts_en.pdf, and an introduction to Tidyverse (which is used
throughout the R programming) can be found at
https://r4ds.had.co.nz. Using this time to learn R would likely be well
worth your time.

Perhaps you already know R and want to learn Stata. Or perhaps
you know Stata and want to learn R. Then this book may be helpful
because of the way in which both sets of code are put in sequence
to accomplish the same basic tasks. But, with that said, in many
situations, although I have tried my best to reconcile results from

https://fmwww.bc.edu/GStat/docs/StataIntro.pdf
https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
https://r4ds.had.co.nz/


Stata and R, I was not always able to do so. Ultimately, Stata and R
are different programming languages that sometimes yield different
results because of different optimization procedures or simply
because the programs are built slightly differently. This has been
discussed occasionally in articles in which authors attempt to better
understand what accounts for the differing results. I was not always
able to fully reconcile different results, and so I offer the two
programs as simply alternative approaches. You are ultimately
responsible for anything you do on your own using either language
for your research. I leave it to you ultimately to understand the
method and estimating procedure contained within a given software
and package.

In conclusion, simply finding an association between two variables
might be suggestive of a causal effect, but it also might not.
Correlation doesn’t mean causation unless key assumptions hold.
Before we start digging into the causal methodologies themselves,
though, I need to lay down a foundation in statistics and regression
modeling. Buckle up! This is going to be fun.

Notes
1 “Too long; didn’t read.”
2 Rilke said you should quit writing poetry when you can imagine yourself

living without it [Rilke, 2012]. I could imagine living without poetry, so I took his
advice and quit. Interestingly, when I later found economics, I went back to
Rilke and asked myself if I could live without it. This time, I decided I couldn’t,
or wouldn’t—I wasn’t sure which. So I stuck with it and got a PhD.

3 I decided to write this book for one simple reason: I didn’t feel that the
market had provided the book that I needed for my students. So I wrote this
book for my students and me so that we’d all be on the same page. This book
is my best effort to explain causal inference to myself. I felt that if I could
explain causal inference to myself, then I would be able to explain it to others
too. Not thinking the book would have much value outside of my class, I
posted it to my website and told people about it on Twitter. I was surprised to
learn that so many people found the book helpful.

4 Although Angrist and Pischke [2009] provides an online data warehouse
from dozens of papers, I find that students need more pedagogical walk-
throughs and replications for these ideas to become concrete and familiar.



5 It is not the only cornerstone, or even necessarily the most important
cornerstone, but empirical analysis has always played an important role in
scientific work.

6 You can also obtain a starting point for empirical analysis through an
intuitive and less formal reasoning process. But economics favors formalism
and deductive methods.

7 Scientific models, be they economic ones or otherwise, are abstract, not
realistic, representations of the world. That is a strength, not a weakness.
George Box, the statistician, once quipped that “all models are wrong, but
some are useful.” A model’s usefulness is its ability to unveil hidden secrets
about the world. No more and no less.

8 One of the things implied by ceteris paribus that comes up repeatedly in
this book is the idea of covariate balance. If we say that everything is the same
except for the movement of one variable, then everything is the same on both
sides of that variable’s changing value. Thus, when we invoke ceteris paribus,
we are implicitly invoking covariate balance—both the observable and the
unobservable covariates.

9 More on the error term later.
10 This was done solely for aesthetic reasons. Often the URL was simply

too long for the margins of the book otherwise.



Regression Discontinuity

Jump around!
Jump around!
Jump up, jump up, and get down!
Jump!
House of Pain

Huge Popularity of Regression Discontinuity
Waiting for life. Over the past twenty years, interest in the
regression-discontinuity design (RDD) has increased (Figure 19). It
was not always so popular, though. The method dates back about
sixty years to Donald Campbell, an educational psychologist, who
wrote several studies using it, beginning with Thistlehwaite and
Campbell [1960].1 In a wonderful article on the history of thought
around RDD, Cook [2008] documents its social evolution. Despite
Campbell’s many efforts to advocate for its usefulness and
understand its properties, RDD did not catch on beyond a few
doctoral students and a handful of papers here and there.
Eventually, Campbell too moved on from it.



Figure 19. Regression discontinuity over time.

To see its growing popularity, let’s look at counts of papers from
Google Scholar by year that mentioned the phrase “regression
discontinuity design” (see Figure 19).2 Thistlehwaite and Campbell
[1960] had no influence on the broader community of scholars using
his design, confirming what Cook [2008] wrote. The first time RDD
appears in the economics community is with an unpublished
econometrics paper [Goldberger, 1972]. Starting in 1976, RDD finally
gets annual double-digit usage for the first time, after which it begins
to slowly tick upward. But for the most part, adoption was
imperceptibly slow.

But then things change starting in 1999. That’s the year when a
couple of notable papers in the prestigious Quarterly Journal of
Economics resurrected the method. These papers were Angrist and
Lavy [1999] and Black [1999], followed by Hahn et al. [2001] two
years later. Angrist and Lavy [1999], which we discuss in detail later,
studied the effect of class size on pupil achievement using an



unusual feature in Israeli public schools that created smaller classes
when the number of students passed a particular threshold. Black
[1999] used a kind of RDD approach when she creatively exploited
discontinuities at the geographical level created by school district
zoning to estimate people’s willingness to pay for better schools. The
year 1999 marks a watershed in the design’s widespread adoption.
A 2010 Journal of Economic Literature article by Lee and Lemieux,
which has nearly 4,000 cites shows up in a year with nearly 1,500
new papers mentioning the method. By 2019, RDD output would be
over 5,600. The design is today incredibly popular and shows no
sign of slowing down.

But 1972 to 1999 is a long time without so much as a peep for
what is now considered one of the most credible research designs
with observational data, so what gives? Cook [2008] says that RDD
was “waiting for life” during this time. The conditions for life in
empirical microeconomics were likely the growing acceptance of the
potential outcomes framework among microeconomists (i.e., the so-
called credibility revolution led by Josh Angrist, David Card, Alan
Krueger, Steven Levitt, and many others) as well as, and perhaps
even more importantly, the increased availability of large digitized the
administrative data sets, many of which often captured unusual
administrative rules for treatment assignments. These unusual rules,
combined with the administrative data sets’ massive size, provided
the much-needed necessary conditions for Campbell’s original
design to bloom into thousands of flowers.

Graphical representation of RDD. So what’s the big deal? Why is
RDD so special? The reason RDD is so appealing to many is
because of its ability to convincingly eliminate selection bias. This
appeal is partly due to the fact that its underlying identifying
assumptions are viewed by many as easier to accept and evaluate.
Rendering selection bias impotent, the procedure is capable of
recovering average treatment effects for a given subpopulation of
units. The method is based on a simple, intuitive idea. Consider the
following DAG developed by Steiner et al. [2017] that illustrates this
method very well.



In the first graph, X is a continuous variable assigning units to
treatment D (X→D). This assignment of units to treatment is based
on a “cutoff” score c0 such that any unit with a score above the cutoff
gets placed into the treatment group, and units below do not. An
example might be a charge of driving while intoxicated (or impaired;
DWI). Individuals with a blood-alcohol content of 0.08 or higher are
arrested and charged with DWI, whereas those with a blood-alcohol
level below 0.08 are not [Hansen, 2015]. The assignment variable
may itself independently affect the outcome via the X→Y path and
may even be related to a set of variables U that independently
determine Y. Notice for the moment that a unit’s treatment status is
exclusively determined by the assignment rule. Treatment is not
determined by U.

This DAG clearly shows that the assignment variable X—or what
is often called the “running variable”—is an observable confounder
since it causes both D and Y. Furthermore, because the assignment
variable assigns treatment on the basis of a cutoff, we are never able
to observe units in both treatment and control for the same value of
X. Calling back to our matching chapter, this means a situation such
as this one does not satisfy the overlap condition needed to use
matching methods, and therefore the backdoor criterion cannot be
met.3

However, we can identify causal effects using RDD, which is
illustrated in the limiting graph DAG. We can identify causal effects



for those subjects whose score is in a close neighborhood around
some cutoff c0. Specifically, as we will show, the average causal
effect for this subpopulation is identified as X → c0 in the limit. This is
possible because the cutoff is the sole point where treatment and
control subjects overlap in the limit.

There are a variety of explicit assumptions buried in this graph that
must hold in order for the methods we will review later to recover any
average causal effect. But the main one I discuss here is that the
cutoff itself cannot be endogenous to some competing intervention
occurring at precisely the same moment that the cutoff is triggering
units into the D treatment category. This assumption is called
continuity, and what it formally means is that the expected potential
outcomes are continuous at the cutoff. If expected potential
outcomes are continuous at the cutoff, then it necessarily rules out
competing interventions occurring at the same time.

The continuity assumption is reflected graphically by the absence
of an arrow from X→Y in the second graph because the cutoff c0 has
cut it off. At c0, the assignment variable X no longer has a direct
effect on Y. Understanding continuity should be one of your main
goals in this chapter. It is my personal opinion that the null
hypothesis should always be continuity and that any discontinuity
necessarily implies some cause, because the tendency for things to
change gradually is what we have come to expect in nature. Jumps
are so unnatural that when we see them happen, they beg for
explanation. Charles Darwin, in his On the Origin of Species,
summarized this by saying Natura non facit saltum, or “nature does
not make jumps.” Or to use a favorite phrase of mine from growing
up in Mississippi, if you see a turtle on a fencepost, you know he
didn’t get there by himself.

That’s the heart and soul of RDD. We use our knowledge about
selection into treatment in order to estimate average treatment
effects. Since we know the probability of treatment assignment
changes discontinuously at c0, then our job is simply to compare
people above and below c0 to estimate a particular kind of average
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treatment effect called the local average treatment effect, or LATE
[Imbens and Angrist, 1994]. Because we do not have overlap, or
“common support,” we must rely on extrapolation, which means we
are comparing units with different values of the running variable.
They only overlap in the limit as X approaches the cutoff from either
direction. All methods used for RDD areways of handling the bias
from extrapolation as cleanly as possible. A picture is worth a
thousand words. As I’ve said before, and will say again and again—
pictures of your main results, including your identification strategy,
are absolutely essential to any study attempting to convince readers
of a causal effect. And RDD is no different. In fact, pictures are the
comparative advantage of RDD. RDD is, like many modern designs,
a very visually intensive design. It and synthetic control are probably
two of the most visually intensive designs you’ll ever encounter, in
fact. So to help make RDD concrete, let’s first look at a couple of
pictures. The following discussion derives from Hoekstra [2009].4

Labor economists had for decades been interested in estimating
the causal effect of college on earnings. But Hoekstra wanted to
crack open the black box of college’s returns a little by checking
whether there were heterogeneous returns to college. He does this
by estimating the causal effect of attending the state flagship
university on earnings. State flagship universities are often more
selective than other public universities in the same state. In Texas,
the top 7% of graduating high school students can select their
university in state, and the modal first choice is University of Texas at
Austin. These universities are often environments of higher research,
with more resources and strongly positive peer effects. So it is
natural to wonder whether there are heterogeneous returns across
public universities.

The challenge in this type of question should be easy to see. Let’s
say that we were to compare individuals who attended the University
of Florida to those who attended the University of South Florida.
Insofar as there is positive selection into the state flagship school,
we might expect individuals with higher observed and unobserved
ability to sort into the state flagship school. And insofar as that ability
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increases one’s marginal product, then we expect those individuals
to earn more in the workforce regardless of whether they had in fact
attended the state flagship. Such basic forms of selection bias
confound our ability to estimate the causal effect of attending the
state flagship on earnings. But Hoekstra [2009] had an ingenious
strategy to disentangle the causal effect from the selection bias
using an RDD. To illustrate, let’s look at two pictures associated with
this interesting study.

Before talking about the picture, I want to say something about the
data. Hoekstra has data on all applications to the state flagship
university. To get these data, he would’ve had to build a relationship
with the admissions office. This would have involved making
introductions, holding meetings to explain his project, convincing
administrators the project had value for them as well as him, and
ultimately winning their approval to cooperatively share the data.
This likely would’ve involved the school’s general counsel, careful
plans to de-identify the data, agreements on data storage, and many
other assurances that students’ names and identities were never
released and could not be identified. There is a lot of trust and social
capital that must be created to do projects like this, and this is the
secret sauce inmost RDDs—your acquisition of the data requires far
more soft skills, such as friendship, respect, and the building of
alliances, than you may be accustomed to. This isn’t as
straightforward as simply downloading the CPS from IPUMS; it’s
going to take genuine smiles, hustle, and luck. Given that these
agencies have considerable discretion in whom they release data to,
it is likely that certain groups will have more trouble than others in
acquiring the data. So it is of utmost importance that you approach
these individuals with humility, genuine curiosity, and most of all,
scientific integrity. They ultimately are the ones who can give you the
data if it is not public use, so don’t be a jerk.5

But on to the picture. Figure 20 has a lot going on, and it’s worth
carefully unpacking each element for the reader. There are four
distinct elements to this picture that I want to focus on. First, notice
the horizontal axis. It ranges from a negative number to a positive



number with a zero around the center of the picture. The caption
reads “SAT Points Above or Below the Admission Cutoff.” Hoekstra
has “recentered” the university’s admissions criteria by subtracting
the admission cutoff from the students’ actual score, which is
something I discuss in more detail later in this chapter. The vertical
line at zero marks the “cutoff,” which was this university’s minimum
SAT score for admissions. It appears it was binding, but not
deterministically, for there are some students who enrolled but did
not have the minimum SAT requirements. These individuals likely
had other qualifications that compensated for their lower SAT scores.
This recentered SAT score is in today’s parlance called the “running
variable.”



Figure 20. Attending the state flagship university as a function of recentered
standardized test scores. Reprinted from Mark Hoekstra, “The Effect of
Attending the Flagship State University on Earnings: A Discontinuity-Based
Approach,” The Review of Economics and Statistics, 91:4 (November, 2009),
pp. 717–724. © 2009 by the President and Fellows of Harvard College and the
Massachusetts Institute of Technology.

Second, notice the dots. Hoekstra used hollow dots at regular
intervals along the recentered SAT variable. These dots represent
conditional mean enrollments per recentered SAT score. While his
administrative data set contains thousands and thousands of
observations, he only shows the conditional means along evenly
spaced out bins of the recentered SAT score.

Third are the curvy lines fitting the data. Notice that the picture has
two such lines—there is a curvy line fitted to the left of zero, and
there is a separate line fit to the right. These lines are the least
squares fitted values of the running variable, where the running
variable was allowed to take on higher-order terms. By including
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higher-order terms in the regression itself, the fitted values are
allowed to more flexibly track the central tendencies of the data itself.
But the thing I really want to focus your attention on is that there are
two lines, not one. He fit the lines separately to the left and right of
the cutoff.

Finally, and probably the most vivid piece of information in this
picture—the gigantic jump in the dots at zero on the recentered
running variable. What is going on here? Well, I think you probably
know, but let me spell it out. The probability of enrolling at the
flagship state university jumps discontinuously when the student just
barely hits the minimum SAT score required by the school. Let’s say
that the score was 1250. That means a student with 1240 had a
lower chance of getting in than a student with 1250. Ten measly
points and they have to go a different path.

Imagine two students—the first student got a 1240, and the
second got a 1250. Are these two students really so different from
one another? Well, sure: those two individual students are likely very
different. But what if we had hundreds of students who made 1240
and hundreds more who made 1250. Don’t you think those two
groups are probably pretty similar to one another on observable and
unobservable characteristics? After all, why would there be suddenly
at 1250 a major difference in the characteristics of the students in a
large sample? That’s the question you should reflect on. If the
university is arbitrarily picking a reasonable cutoff, are there reasons
to believe they are also picking a cutoff where the natural ability of
students jumps at that exact spot?

But I said Hoekstra is evaluating the effect of attending the state
flagship university on future earnings. Here’s where the study gets
even more intriguing. States collect data on workers in a variety of
ways. One is through unemployment insurance tax reports.
Hoekstra’s partner, the state flagship university, sent the university
admissions data directly to a state office in which employers submit
unemployment insurance tax reports. The university had social
security numbers, so the matching of student to future worker
worked quite well since a social security number uniquely identifies a
worker. The social security numbers were used to match quarterly
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earnings records from 1998 through the second quarter of 2005 to
the university records. He then estimated:

where ψ is a vector of year dummies, ω is a dummy for years after
high school that earnings were observed, and θ is a vector of
dummies controlling for the cohort in which the student applied to the
university (e.g., 1988). The residuals from this regression were then
averaged for each applicant, with the resulting average residual
earnings measure being used to implement a partialled out future
earnings variable according to the Frisch-Waugh-Lovell theorem.
Hoekstra then takes each students’ residuals from the natural log of
earnings regression and collapses them into conditional averages for
bins along the recentered running variable. Let’s look at that in
Figure 21.

In this picture, we see many of the same elements we saw in
Figure 20. For instance, we see the recentered running variable
along the horizontal axis, the little hollow dots representing
conditional means, the curvy lines which were fit left and right of the
cutoff at zero, and a helpful vertical line at zero. But now we also
have an interesting title: “Estimated Discontinuity = 0.095 (z = 3.01).”
What is this exactly?

iPad



Figure 21. Future earnings as a function of recentered standardized test
scores. Reprinted from Mark Hoekstra, “The Effect of Attending the Flagship
State University on Earnings: A Discontinuity-Based Approach,” The Review of
Economics and Statistics, 91:4 (November, 2009), pp. 717–724. © 2009 by the
President and Fellows of Harvard College and the Massachusetts Institute of
Technology.

The visualization of a discontinuous jump at zero in earnings isn’t
as compelling as the prior figure, so Hoekstra conducts hypothesis
tests to determine if the mean between the groups just below and
just above are the same. He finds that they are not: those just above
the cutoff earn 9.5% higher wages in the long term than do those just
below. In his paper, he experiments with a variety of binning of the
data (what he calls the “bandwidth”), and his estimates when he
does so range from 7.4% to 11.1%.

Now let’s think for a second about what Hoekstra is finding.
Hoekstra is finding that at exactly the point where workers
experienced a jump in the probability of enrolling at the state flagship
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university, there is, ten to fifteen years later, a separate jump in
logged earnings of around 10%. Those individuals who just barely
made it in to the state flagship university made around 10% more in
long-term earnings than those individuals who just barely missed the
cutoff.

This, again, is the heart and soul of the RDD. By exploiting
institutional knowledge about how students were accepted (and
subsequently enrolled) into the state flagship university, Hoekstra
was able to craft an ingenious natural experiment. And insofar as the
two groups of applicants right around the cutoff have comparable
future earnings in a world where neither attended the state flagship
university, then there is no selection bias confounding his
comparison. And we see this result in powerful, yet simple graphs.
This study was an early one to show that not only does college
matter for long-term earnings, but the sort of college you attend—
even among public universities—matters as well.

Data requirements for RDD. RDD is all about finding “jumps” in the
probability of treatment as we move along some running variable X.
So where do we find these jumps? Where do we find these
discontinuities? The answer is that humans often embed jumps into
rules. And sometimes, if we are lucky, someone gives us the data
that allows us to use these rules for our study.

I am convinced that firms and government agencies are
unknowingly sitting atop a mountain of potential RDD-based
projects. Students looking for thesis and dissertation ideas might try
to find them. I encourage you to find a topic you are interested in and
begin building relationships with local employers and government
administrators for whom that topic is a priority. Take them out for
coffee, get to know them, learn about their job, and ask them how
treatment assignment works. Pay close attention to precisely how
individual units get assigned to the program. Is it random? Is it via a
rule? Oftentimes they will describe a process whereby a running
variable is used for treatment assignment, but they won’t call it that.
While I can’t promise this will yield pay dirt, my hunch, based in part
on experience, is that they will end up describing to you some
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running variable that when it exceeds a threshold, people switch into
some intervention. Building alliances with local firms and agencies
can pay when trying to find good research ideas.

The validity of an RDD doesn’t require that the assignment rule be
arbitrary. It only requires that it be known, precise and free of
manipulation. The most effective RDD studies involve programs
where X has a “hair trigger” that is not tightly related to the outcome
being studied. Examples include the probability of being arrested for
DWI jumping at greater than 0.08 blood-alcohol content [Hansen,
2015]; the probability of receiving health-care insurance jumping at
age 65, [Card et al., 2008]; the probability of receiving medical
attention jumping when birthweight falls below 1,500 grams [Almond
et al., 2010; Barreca et al., 2011]; the probability of attending
summer school when grades fall below some minimum level [Jacob
and Lefgen, 2004], and as we just saw, the probability of attending
the state flagship university jumping when the applicant’s test scores
exceed some minimum requirement [Hoekstra, 2009].

In all these kinds of studies, we need data. But specifically, we
need a lot of data around the discontinuities, which itself implies that
the data sets useful for RDD are likely very large. In fact, large
sample sizes are characteristic features of the RDD. This is also
because in the face of strong trends in the running variable, sample-
size requirements get even larger. Researchers are typically using
administrative data or settings such as birth records where there are
many observations.

Estimation Using an RDD
The Sharp RD Design. There are generally accepted two kinds of
RDD studies. There are designs where the probability of treatment
goes from0 to 1 at the cutoff, or what is called a “sharp” design. And
there are designs where the probability of treatment discontinuously
increases at the cutoff. These are often called “fuzzy” designs. In all
of these, though, there is some running variable X that, upon
reaching a cutoff c0, the likelihood of receiving some treatment flips.
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Let’s look at the diagram in Figure 22, which illustrates the
similarities and differences between the two designs.

Figure 22. Sharp vs. Fuzzy RDD.

Sharp RDD is where treatment is a deterministic function of the
running variable X.6 An example might be Medicare enrollment,
which happens sharply at age 65, excluding disability situations. A
fuzzy RDD represents a discontinuous “jump” in the probability of
treatment when X > c0. In these fuzzy designs, the cutoff is used as
an instrumental variable for treatment, like Angrist and Lavy [1999],
who instrument for class size with a class-size function they created
from the rules used by Israeli schools to construct class sizes.

More formally, in a sharp RDD, treatment status is a deterministic
and discontinuous function of a running variable Xi, where



where c0 is a known threshold or cutoff. If you know the value of Xi

for unit i, then you know treatment assignment for unit i with
certainty. But, if for every value of X you can perfectly predict the
treatment assignment, then it necessarily means that there are no
overlap along the running variable.

If we assume constant treatment effects, then in potential
outcomes terms, we get

Using the switching equation, we get

where the treatment effect parameter, δ, is the discontinuity in the
conditional expectation function:

The sharp RDD estimation is interpreted as an average causal effect
of the treatment as the running variable approaches the cutoff in the
limit, for it is only in the limit that we have overlap. This average
causal effect is the local average treatment effect (LATE). We
discuss LATE in greater detail in the instrumental variables, but I will
say one thing about it here. Since identification in an RDD is a
limiting case, we are technically only identifying an average causal
effect for those units at the cutoff. Insofar as those units have



treatment effects that differ from units along the rest of the running
variable, then we have only estimated an average treatment effect
that is local to the range around the cutoff. We define this local
average treatment effect as follows:

Figure 23. Simulated data representing observed data points along a
running variable below and above some binding cutoff. Note: Dashed lines are
extrapolations.

Notice the role that extrapolation plays in estimating treatment
effects with sharp RDD. If unit i is just below c0, then Di = 0. But if
unit i is just above c0, then the Di =1. But for any value of Xi, there
are either units in the treatment group or the control group, but not
both. Therefore, the RDD does not have common support, which is
one of the reasons we rely on extrapolation for our estimation. See
Figure 23.



Continuity assumption. The key identifying assumption in an RDD is
called the continuity assumption. It states that  | X = c0] and 
| X = c0] are continuous (smooth) functions of X even across the c0
threshold. Absent the treatment, in other words, the expected
potential outcomes wouldn’t have jumped; they would’ve remained
smooth functions of X. But think about what that means for a
moment. If the expected potential outcomes are not jumping at c0,
then there necessarily are no competing interventions occurring at
c0. Continuity, in other words, explicitly rules out omitted variable
bias at the cutoff itself. All other unobserved determinants of Y are
continuously related to the running variable X. Does there exist some
omitted variable wherein the outcome, would jump at c0 even if we
disregarded the treatment altogether? If so, then the continuity
assumption is violated and our methods do not require the LATE.



Figure 24. Mortality rates along age running variable [Carpenter and Dobkin,
2009].

I apologize if I’m beating a dead horse, but continuity is a subtle
assumption and merits a little more discussion. The continuity
assumption means that E[Y1 | X] wouldn’t have jumped at c0. If it had
jumped, then it means something other than the treatment caused it
to jump because Y1 is already under treatment. So an example
might be a study finding a large increase in motor vehicle accidents
at age 21. I’ve reproduced a figure from and interesting study on
mortality rates for different types of causes [Carpenter and Dobkin,
2009]. I have reproduced one of the key figures in Figure 24. Notice
the large discontinuous jump in motor vehicle death rates at age 21.
The most likely explanation is that age 21 causes people to drink
more, and sometimes even while they are driving.

But this is only a causal effect if motor vehicle accidents don’t jump
at age 21 for other reasons. Formally, this is exactly what is implied



by continuity—the absence of simultaneous treatments at the cutoff.
For instance, perhaps there is something biological that happens to
21-year-olds that causes them to suddenly become bad drivers. Or
maybe 21-year-olds are all graduating from college at age 21, and
during celebrations, they get into wrecks. To test this, we might
replicate Carpenter and Dobkin [2009] using data from Uruguay,
where the drinking age is 18. If we saw a jump in motor vehicle
accidents at age 21 in Uruguay, then we might have reason to
believe the continuity assumption does not hold in the United States.
Reasonably defined placebos can help make the case that the
continuity assumption holds, even if it is not a direct test per se.

Sometimes these abstract ideas become much easier to
understand with data, so here is an example of what we mean using
a simulation.





Figure 25 shows the results from this simulation. Notice that the
value of E[Y1 | X] is changing continuously over X and through c0.
This is an example of the continuity assumption. It means absent the
treatment itself, the expected potential outcomes would’ve remained
a smooth function of X even as passing c0. Therefore, if continuity
held, then only the treatment, triggered at c0, could be responsible
for discrete jumps in E[Y | X].

The nice thing about simulations is that we actually observe the
potential outcomes since we made them ourselves. But in the real
world, we don’t have data on potential outcomes. If we did, we could
test the continuity assumption directly. But remember—by the



switching equation, we only observe actual outcomes, never
potential outcomes. Thus, since units switch from Y0 to Y1 at c0, we
actually can’t directly evaluate the continuity assumption. This is
where institutional knowledge goes a long way, because it can help
build the case that nothing else is changing at the cutoff that would
otherwise shift potential outcomes.

Figure 25. Smoothness of Y1 across the cutoff illustrated using simulated
data.

Let’s illustrate this using simulated data. Notice that while Y1 by
construction had not jumped at 50 on the X running variable, Y will.
Let’s look at the output in Figure 26. Notice the jump at the
discontinuity in the outcome, which I’ve labeled the LATE, or local
average treatment effect.



Estimation using local and global least squares regressions. I’d like
to now dig into the actual regression model you would use to
estimate the LATE parameter in an RDD. We will first discuss some
basic modeling choices that researchers often make—some trivial,
some important. This section will focus primarily on regression-
based estimation.



Figure 26. Estimated LATE using simulated data.

While not necessary, it is nonetheless quite common for authors to
transform the running variable X by recentering at c0:

This doesn’t change the interpretation of the treatment effect—only
the interpretation of the intercept. Let’s use Card et al. [2008] as an
example. Medicare is triggered when a person turns 65. So recenter
the running variable (age) by subtracting 65:
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where α = β0 + β165. All other coefficients, notice, have the same
interpretation except for the intercept.

Another practical question relates to nonlinear data-generating
processes. A nonlinear data-generating process could easily yield
false positives if we do not handle the specification carefully.
Because sometimes we are fitting local linear regressions around the
cutoff, we could spuriously pick up an effect simply for no other
reason than that we imposed linearity on the model. But if the
underlying data-generating process is nonlinear, then it may be a
spurious result due to misspecification of the model. Consider an
example of this nonlinearity in Figure 27.





I show this both visually and with a regression. As you can see in
Figure 27, the data-generating process was nonlinear, but when with
straight lines to the left and right of the cutoff, the trends in the
running variable generate a spurious discontinuity at the cutoff. This
shows up in a regression as well. When we fit the model using a
least squares regression controlling for the running variable, we
estimate a causal effect though there isn’t one. In Table 40, the
estimated effect of D on Y is large and highly significant, even
though the true effect is zero. In this situation, we would need some
way to model the nonlinearity below and above the cutoff to check
whether, even given the nonlinearity, there had been a jump in the
outcome at the discontinuity.

Suppose that the nonlinear relationships is

for some reasonably smooth function f(Xi). In that case, we’d fit the
regression model:

Since f(Xi) is counterfactual for values of Xi > c0, how will we model
the nonlinearity? There are two ways of approximating f(Xi). The
traditional approaches let f(XBei) equal a pth-order polynomial:



Figure 27. Simulated nonlinear data from Stata.

Table 40. Estimated effect of D on Y using OLS controlling for linear running
variable.

Higher-order polynomials can lead to overfitting and have been
found to introduce bias [Gelman and Imbens, 2019]. Those authors
recommend using local linear regressions with linear and quadratic
forms only. Another way of approximating f(Xi) is to use a
nonparametric kernel, which I discuss later.

Though Gelman and Imbens [2019] warn us about higher-order
polynomials, I’d like to use an example with pth-order polynomials,
mainly because it’s not uncommon to see this done today. I’d also
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like you to know some of the history of this method and understand
better what old papers were doing. We can generate this function,
f(Xi), by allowing the Xi terms to differ on both sides of the cutoff by
including them both individually and interacting them with Di. In that
case, we

have:

where X̃i is the recentered running variable (i.e., Xi − c0). Centering
at c0 ensures that the treatment effect at Xi = X0 is the coefficient on
Di in a regression model with interaction terms. As Lee and Lemieux
[2010] note, allowing different functions on both sides of the
discontinuity should be the main results in an RDD paper.

To derive a regression model, first note that the observed values
must be used in place of the potential outcomes:

Your regression model then is

where  The equation we looked at
earlier was just a special case of the above equation with 
The treatment effect at c0 is δ. And the treatment effect at Xi − c0 > 0
is  Let’s see this in action with another simulation.



Table 41. Estimated effect of D on Y using OLS controlling for linear and
quadratic running variable.



Let’s look at the output from this exercise in Figure 28 and Table
41. As you can see, once we model the data using a quadratic (the
cubic ultimately was unnecessary), there is no estimated treatment
effect at the cutoff. There is also no effect in our least squares
regression. Nonparametric kernels. But, as we mentioned earlier,
Gelman and Imbens [2019] have discouraged the use of higher-
order polynomials when estimating local linear regressions. An
alternative is to use kernel regression. The nonparametric kernel
method has problems because you are trying to estimate
regressions at the cutoff point, which can result in a boundary
problem (see Figure 29). In this picture, the bias is caused by strong
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trends in expected potential outcomes throughout the running
variable.

Figure 28. Simulated nonlinear data from Stata.

While the true effect in this diagram is AB, with a certain bandwidth
a rectangular kernel would estimate the effect as A'B', which is as
you can see a biased estimator. There is systematic bias with the
kernel method if the underlying nonlinear function, f(X), is upwards-
or downwards-xsloping.

The standard solution to this problem is to run local linear
nonparametric regression [Hahn et al., 2001]. In the case described
above, this would substantially reduce the bias. So what is that?
Think of kernel regression as a weighted regression restricted to a
window (hence “local”). The kernel provides the weights to that
regression.7 A rectangular kernel would give the same result as
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taking E[Y] at a given bin on X. The triangular kernel gives more
importance to the observations closest to the center.

Figure 29. Boundary problem.

The model is some version of:

While estimating this in a given window of width h around the
cutoff is straightforward, what’s not straightforward is knowing how
large or small to make the bandwidth. This method is sensitive to the
choice of bandwidth, but more recent work allows the researcher to
estimate optimal bandwidths [Calonico et al., 2014; Imbens and
Kalyanaraman, 2011]. These may even allow for bandwidths to vary
left and right of the cutoff.
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Medicare and universal health care. Card et al. [2008] is an example
of a sharp RDD, because it focuses on the provision of universal
healthcare insurance for the elderly—Medicare at age 65. What
makes this a policy-relevant question? Universal insurance has
become highly relevant because of the debates surrounding the
Affordable Care Act, as well as several Democratic senators
supporting Medicare for All. But it is also important for its sheer size.
In 2014, Medicare was 14% of the federal budget at $505 billion.

Approximately 20% of non-elderly adults in the United States
lacked insurance in 2005. Most were from lower-income families,
and nearly half were African American or Hispanic. Many analysts
have argued that unequal insurance coverage contributes to
disparities in health-care utilization and health outcomes across
socioeconomic status. But, even among the policies, there is
heterogeneity in the form of different copays, deductibles, and other
features that affect use. Evidence that better insurance causes better
health outcomes is limited because health insurance suffers from
deep selection bias. Both supply and demand for insurance depend
on health status, confounding observational comparisons between
people with different insurance characteristics.

The situation for elderly looks very different, though. Less than 1%
of the elderly population is uninsured. Most have fee-for-service
Medicare coverage. And that transition to Medicare occurs sharply at
age 65—the threshold for Medicare eligibility.

The authors estimate a reduced form model measuring the causal
effect of health insurance status on health-care usage:

where i indexes individuals, j indexes a socioeconomic group, a
indexes age, uija indexes the unobserved error, yija health care
usage, Xija a set of covariates (e.g., gender and region), fj(α;β) a
smooth function representing the age profile of outcome y for group
j, and  (k = 1, 2, . . . ,K) are characteristics of the insurance
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coverage held by the individual such as copayment rates. The
problem with estimating this model, though, is that insurance
coverage is endogenous: cov(u,C) = 0. So the authors use as
identification of the age threshold for Medicare eligibility at 65, which
they argue is credibly exogenous variation in insurance status.

Suppose health insurance coverage can be summarized by two
dummy variables:  (any coverage) and  (generous insurance).
Card et al. [2008] estimate the following linear probability models:

where  and  are group-specific coefficients,  and  are
smooth age profiles for group j, and Da is a dummy if the respondent
is equal to or over age 65. Recall the reduced form model:

Combining the Cija equations, and rewriting the reduced form model,
we get:

where  the reduced form age profile for
group j,  is the error term.
Assuming that the profiles fj(a), gj(a), and  are continuous at age
65 (i.e., the continuity assumption necessary for identification), then
any discontinuity in y is due to insurance. The magnitudes will
depend on the size of the insurance changes at age 65  and 
and on the associated causal effects (δ1 and δ2).

For some basic health-care services, such as routine doctor visits,
it may be that the only thing that matters is insurance. But, in those
situations, the implied discontinuity in Y at age 65 for group j will be
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proportional to the change in insurance status experienced by that
group. For more expensive or elective services, the generosity of the
coverage may matter—for instance, if patients are unwilling to cover
the required copay or if the managed care program won’t cover the
service. This creates a potential identification problem in interpreting
the discontinuity in y for any one group. Since  is a linear
combination of the discontinuities in coverage and generosity, δ1 and
δ2 can be estimated by a regression across groups:

where ej is an error term reflecting a combination of the sampling
errors in  and, 

Card et al. [2008] use a couple of different data sets—one a
standard survey and the other administrative records from hospitals
in three states. First, they use the 1992–2003 National Health
Interview Survey (NHIS). The NHIS reports respondents’ birth year,
birth month, and calendar quarter of the interview. Authors used this
to construct an estimate of age in quarters at date of interview. A
person who reaches 65 in the interview quarter is coded as age 65
and 0 quarters. Assuming a uniform distribution of interview dates,
one-half of these people will be 0–6 weeks younger than 65 and
one-half will be 0–6 weeks older. Analysis is limited to people
between 55 and 75. The final sample has 160,821 observations.

The second data set is hospital discharge records for California,
Florida, and New York. These records represent a complete census
of discharges from all hospitals in the three states except for
federally regulated institutions. The data files include information on
age in months at the time of admission. Their sample selection
criteria is to drop records for people admitted as transfers from other
institutions and limit people between 60 and 70 years of age at
admission. Sample sizes are 4,017,325 (California), 2,793,547
(Florida), and 3,121,721 (New York).

Some institutional details about the Medicare program may be
helpful. Medicare is available to people who are at least 65 and have
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worked forty quarters or more in covered employment or have a
spouse who did. Coverage is available to younger people with
severe kidney disease and recipients of Social Security Disability
Insurance. Eligible individuals can obtain Medicare hospital
insurance (Part A) free of charge and medical insurance (Part B) for
a modest monthly premium. Individuals receive notice of their
impending eligibility for Medicare shortly before they turn 65 and are
informed they have to enroll in it and choose whether to accept Part
B coverage. Coverage begins on the first day of the month in which
they turn 65.

There are five insurance-related variables: probability of Medicare
coverage, any health insurance coverage, private coverage, two or
more forms of coverage, and individual’s primary health insurance is
managed care. Data are drawn from the 1999–2003 NHIS, and for
each characteristic, authors show the incidence rate at age 63–64
and the change at age 65 based on a version of the CK equations
that include a quadratic in age, fully interacted with a post-65 dummy
as well as controls for gender, education, race/ethnicity, region, and
sample year. Alternative specifications were also used, such as a
parametric model fit to a narrower age window (age 63–67) and a
local linear regression specification using a chosen bandwidth. Both
show similar estimates of the change at age 65.

The authors present their findings in Table 42. The way that you
read this table is each cell shows the average treatment effect for the
65-year-old population that complies with the treatment. We can see,
not surprisingly, that the effect of receiving Medicare is to cause a
very large increase of being on Medicare, as well as reducing
coverage on private and managed care.

Formal identification in an RDD relating to some outcome
(insurance coverage) to a treatment (Medicare age-eligibility) that
itself depends on some running variable, age, relies on the continuity
assumptions that we discussed earlier. That is, we must assume that
the conditional expectation functions for both potential outcomes is
continuous at age=65. This means that both E[Y0 | a] and E[Y1 | a]
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are continuous through age of 65. If that assumption is plausible,
then the average treatment effect at age 65 is identified as:

The continuity assumption requires that all other factors, observed
and unobserved, that affect insurance coverage are trending
smoothly at the cutoff, in other words. But what else changes at age
65 other than Medicare eligibility? Employment changes. Typically,
65 is the traditional age when people retire from the labor force. Any
abrupt change in employment could lead to differences in health-
care utilization if nonworkers have more time to visit doctors.

The authors need to, therefore, investigate this possible
confounder. They do this by testing for any potential discontinuities
at age 65 for confounding variables using a third data set—the
March CPS 1996–2004. And they ultimately find no evidence for
discontinuities in employment at age 65 (Figure 30).



Table 42. Insurance characteristics just before age 65 and estimated
discontinuities at age 65.

Note: Entries in each cell are estimated regression discontinuities at age 65
from quadratics in age interacted with a dummy for 65 and older. Other
controls such as gender, race, education, region, and sample year are also
included. Data is from the pooled 1999–2003 NHIS.



Figure 30. Investigating the CPS for discontinuities at age 65 [Card et al.,
2008].

Next the authors investigate the impact that Medicare had on
access to care and utilization using the NHIS data. Since 1997,
NHIS has asked four questions. They are:

“During the past 12 months has medical care been delayed for this person
because of worry about the cost?”

“During the past 12 months was there any time when this person needed
medical care but did not get it because [this person] could not afford it?”

“Did the individual have at least one doctor visit in the past year?”
“Did the individual have one or more overnight hospital stays in the past

year?”

Estimates from this analysis are presented in Table 43. Each cell
measures the average treatment effect for the complier population at
the discontinuity. Standard errors are in parentheses. There are a
few encouraging findings from this table. First, the share of the
relevant population who delayed care the previous year fell 1.8
points, and similar for the share who did not get care at all in the



previous year. The share who saw a doctor went up slightly, as did
the share who stayed at a hospital. These are not very large effects
in magnitude, it is important to note, but they are relatively precisely
estimated. Note that these effects differed considerably by race and
ethnicity as well as education.

Figure 31. Changes in hospitalizations [Card et al., 2008].

Having shown modest effects on care and utilization, the authors
turn to examining the kinds of care they received by examining
specific changes in hospitalizations. Figure 31 shows the effect of
Medicare on hip and knee replacements by race. The effects are
largest for whites.

In conclusion, the authors find that universal health-care coverage
for the elderly increases care and utilization as well as coverage. In a
subsequent study [Card et al., 2009], the authors examined the
impact of Medicare on mortality and found slight decreases in
mortality rates (see Table 44). Inference. As we’ve mentioned, it’s
standard practice in the RDD to estimate causal effects using local
polynomial regressions. In its simplest form, this amounts to nothing



more complicated than fitting a linear specification separately on
each side of the cutoff using a least squares regression. But when
this is done, you are using only the observations within some pre-
specified window (hence “local”). As the true conditional expectation
function is probably not linear at this window, the resulting estimator
likely suffers from specification bias. But if you can get the window
narrow enough, then the bias of the estimator is probably small
relative to its standard deviation.

Table 43. Measures of access to care just before 65 and estimated
discontinuities at age 65.

Note: Entries in each cell are estimated regression discontinuities at age 65
from quadratics in age interacted with a dummy for 65 and older.Other controls
such as gender, race, education, region and sample year are also included.
First two columns are from 1997–2003 NHIS and last two columns are from
1992–2003 NHIS.



Table 44. Regression discontinuity estimates of changes in mortality rates.

Note: Dependent variable for death within interval shown in the column
heading. Regression estimates at the discontinuity of age 65 for flexible
regression models. Standard errors in parentheses.

But what if the window cannot be narrowed enough? This can
happen if the running variable only takes on a few values, or if the
gap between values closest to the cutoff are large. The result could
be you simply do not have enough observations close to the cutoff
for the local polynomial regression. This also can lead to the
heteroskedasticity-robust confidence intervals to undercover the
average causal effect because it is not centered. And here’s the
really bad news—this probably is happening a lot in practice.

In a widely cited and very influential study, Lee and Card [2008]
suggested that researchers should cluster their standard errors by
the running variable. This advice has since become common
practice in the empirical literature. Lee and Lemieux [2010], in a
survey article on proper RDD methodology, recommend this
practice, just to name one example. But in a recent study, Kolesár
and Rothe [2018] provide extensive theoretical and simulation-based
evidence that clustering on the running variable is perhaps one of
the worst approaches you could take. In fact, clustering on the
running variable can actually be substantially worse than
heteroskedastic-robust standard errors.
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As an alternative to clustering and robust standard errors, the
authors propose two alternative confidence intervals that have
guaranteed coverage properties under various restrictions on the
conditional expectation function. Both confidence intervals are
“honest,” which means they achieve correct coverage uniformly over
all conditional expectation functions in large samples. These
confidence intervals are currently unavailable in Stata as of the time
of this writing, but they can be implemented in R with the RDHonest
package.8 R users are encouraged to use these confidence
intervals. Stata users are encouraged to switch (grudgingly) to R so
as to use these confidence intervals. Barring that, Stata users should
use the heteroskedastic robust standard errors. But whatever you
do, don’t cluster on the running variable, as that is nearly an
unambiguously bad idea.

A separate approach may be to use randomization inference. As
we noted, Hahn et al. [2001] emphasized that the conditional
expected potential outcomes must be continuous across the cutoff
for a regression discontinuity design to identify the local average
treatment effect. But Cattaneo et al. [2015] suggest an alternative
assumption which has implications for inference. They ask us to
consider that perhaps around the cutoff, in a short enough window,
the treatment was assigned to units randomly. It was effectively a
coin flip which side of the cutoff someone would be for a small
enough window around the cutoff. Assuming there exists a
neighborhood around the cutoff where this randomization-type
condition holds, then this assumption may be viewed as an
approximation of a randomized experiment around the cutoff.
Assuming this is plausible, we can proceed as if only those
observations closest to the discontinuity were randomly assigned,
which leads naturally to randomization inference as a methodology
for conducting exact or approximate p-values.
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Figure 32. Vertical axis is the probability of treatment for each value of the
running variable.

The Fuzzy RD Design. In the sharp RDD, treatment was determined
when Xi ≥ c0. But that kind of deterministic assignment does not
always happen. Sometimes there is a discontinuity, but it’s not
entirely deterministic, though it nonetheless is associated with a
discontinuity in treatment assignment. When there is an increase in
the probability of treatment assignment, we have a fuzzy RDD. The
earlier paper by Hoekstra [2009] had this feature, as did Angrist and
Lavy [1999]. The formal definition of a probabilistic treatment
assignment is

In other words, the conditional probability is discontinuous as X
approaches c0 in the limit. A visualization of this is presented from
Imbens and Lemieux [2008] in Figure 32.

The identifying assumptions are the same under fuzzy designs as
they are under sharp designs: they are the continuity assumptions.
For identification, we must assume that the conditional expectation
of the potential outcomes (e.g., E[Y0|X < c0]) is changing smoothly
through c0. What changes at c0 is the treatment assignment



probability. An illustration of this identifying assumption is in Figure
33.

Estimating some average treatment effect under a fuzzy RDD is
very similar to how we estimate a local average treatment effect with
instrumental variables. I will cover instrumental variables in more
detail later in the book, but for now let me tell you about estimation
under fuzzy designs using IV. One can estimate several ways. One
simple way is a type of Wald estimator, where you estimate some
causal effect as the ratio of a reduced form difference in mean
outcomes around the cutoff and a reduced form difference in mean
treatment assignment around the cutoff.

Figure 33. Potential and observed outcomes under a fuzzy design.

The assumptions for identification here are the same as with any
instrumental variables design: all the caveats about exclusion
restrictions, monotonicity, SUTVA, and the strength of the first
stage.9

But one can also estimate the effect using a two-stage least
squares model or similar appropriate model such as limited-
information maximum likelihood. Recall that there are now two
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events: the first event is when the running variable exceeds the
cutoff, and the second event is when a unit is placed in the
treatment. Let Zi be an indicator for when X exceeds c0. One can
use both Zi and the interaction terms as instruments for the
treatment Di. If one uses only Zi as an instrumental variable, then it is
a “just identified” model, which usually has good finite sample
properties.

Let’s look at a few of the regressions that are involved in this
instrumental variables approach. There are three possible
regressions: the first stage, the reduced form, and the second stage.
Let’s look at them in order. In the case just identified (meaning only
one instrument for one endogenous variable), the first stage would
be:

where π is the causal effect of Zi on the conditional probability of
treatment. The fitted values from this regression would then be used
in a second stage. We can also use both Zi and the interaction terms
as instruments for Di. If we used Zi and all its interactions, the
estimated first stage would be:

We would also construct analogous first stages for 
If we wanted to forgo estimating the full IV model, we might

estimate the reduced form only. You’d be surprised how many
applied people prefer to simply report the reduced form and not the
fully specified instrumental variables model. If you read Hoekstra
[2009], for instance, he favored presenting the reduced form—that
second figure, in fact, was a picture of the reduced form. The
reduced form would regress the outcome Y onto the instrument and
the running variable. The form of this fuzzy RDD reduced form is:
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As in the sharp RDD case, one can allow the smooth function to
be different on both sides of the discontinuity by interacting Zi with
the running variable. The reduced form for this regression is:

But let’s say you wanted to present the estimated effect of the
treatment on some outcome. That requires estimating a first stage,
using fitted values from that regression, and then estimating a
second stage on those fitted values. This, and only this, will identify
the causal effect of the treatment on the outcome of interest. The
reduced form only estimates the causal effect of the instrument on
the outcome. The second-stage model with interaction terms would
be the same as before:

Where x ̃are now not only normalized with respect to c0 but are also
fitted values obtained from the first-stage regressions.

As Hahn et al. [2001] point out, one needs the same assumptions
for identification as one needs with IV. As with other binary
instrumental variables, the fuzzy RDD is estimating the local average
treatment effect (LATE) [Imbens and Angrist, 1994], which is the
average treatment effect for the compliers. In RDD, the compliers
are those whose treatment status changed as we moved the value of
xi from just to the left of c0 to just to the right of c0.

Challenges to Identification
The requirement for RDD to estimate a causal effect are the
continuity assumptions. That is, the expected potential outcomes
change smoothly as a function of the running variable through the
cutoff. In words, this means that the only thing that causes the



outcome to change abruptly at c0 is the treatment. But, this can be
violated in practice if any of the following is true:

1. The assignment rule is known in advance.
2. Agents are interested in adjusting.
3. Agents have time to adjust.
4. The cutoff is endogenous to factors that independently cause potential
outcomes to shift.
5. There is nonrandom heaping along the running variable.

Examples include retaking an exam, self-reporting income, and so
on. But some other unobservable characteristic change could
happen at the threshold, and this has a direct effect on the outcome.
In other words, the cutoff is endogenous. An example would be age
thresholds used for policy, such as when a person turns 18 years old
and faces more severe penalties for crime. This age threshold
triggers the treatment (i.e., higher penalties for crime), but is also
correlated with variables that affect the outcomes, such as
graduating from high school and voting rights. Let’s tackle these
problems separately.

McCrary’s density test. Because of these challenges to identification,
a lot of work by econometricians and applied microeconomists has
gone toward trying to figure out solutions to these problems. The
most influential is a density test by Justin McCrary, now called the
McCrary density test [2008]. The McCrary density test is used to
check whether units are sorting on the running variable. Imagine that
there are two rooms with patients in line for some life-saving
treatment. Patients in room A will receive the life-saving treatment,
and patients in room B will knowingly receive nothing. What would
you do if you were in room B? Like me, you’d probably stand up,
open the door, and walk across the hall to room A. There are natural
incentives for the people in room B to get into room A, and the only
thing that would keep people in room B from sorting into room A is if
doing so were impossible.

But, let’s imagine that the people in room B had successfully
sorted themselves into room A. What would that look like to an



outsider? If they were successful, then room A would have more
patients than room B. In fact, in the extreme, room A is crowded and
room B is empty. This is the heart of the McCrary density test, and
when we see such things at the cutoff, we have some suggestive
evidence that people are sorting on the running variable. This is
sometimes called manipulation.

Remember earlier when I said we should think of continuity as the
null because nature doesn’t make jumps? If you see a turtle on a
fencepost, it probably didn’t get there itself. Well, the same goes for
the density. If the null is a continuous density through the cutoff, then
bunching in the density at the cutoff is a sign that someone is moving
over to the cutoff—probably to take advantage of the rewards that
await there. Sorting on the sorting variable is a testable prediction
under the null of a continuous density. Assuming a continuous
distribution of units, sorting on the running variable means that units
are moving just on the other side of the cutoff. Formally, if we
assume a desirable treatment D and an assignment rule X ≥ c0, then
we expect individuals will sort into D by choosing X such that X ≥ c0
—so long as they’re able. If they do, then it could imply selection
bias insofar as their sorting is a function of potential outcomes.

The kind of test needed to investigate whether manipulation is
occurring is a test that checks whether there is bunching of units at
the cutoff. In other words, we need a density test. McCrary [2008]
suggests a formal test where under the null, the density should be
continuous at the cutoff point. Under the alternative hypothesis, the
density should increase at the kink.10 I’ve always liked this test
because it’s a really simple statistical test based on a theory that
human beings are optimizing under constraints. And if they are
optimizing, that makes for testable predictions—like a discontinuous
jump in the density at the cutoff. Statistics built on behavioral theory
can take us further.

To implement the McCrary density test, partition the assignment
variable into bins and calculate frequencies (i.e., the number of
observations) in each bin. Treat the frequency counts as the
dependent variable in a local linear regression. If you can estimate



the conditional expectations, then you have the data on the running
variable, so in principle you can always do a density test. I
recommend the package rddensity,11 which you can install for R as
well.12 These packages are based on Cattaneo et al. [2019], which is
based on local polynomial regressions that have less bias in the
border regions.

This is a high-powered test. You need a lot of observations at c0 to
distinguish a discontinuity in the density from noise. Let me illustrate
in Figure 34 with a picture from McCrary [2008] that shows a
situation with and without manipulation.

Covariate balance and other placebos. It has become common in
this literature to provide evidence for the credibility of the underlying
identifying assumptions, at least to some degree. While the
assumptions cannot be directly tested, indirect evidence may be
persuasive. I’ve already mentioned one such test—the McCrary
density test. A second test is a covariate balance test. For RDD to be
valid in your study, there must not be an observable discontinuous
change in the average values of reasonably chosen covariates
around the cutoff. As these are pretreatment characteristics, they
should be invariant to change in treatment assignment. An example
of this is from Lee et al. [2004], who evaluated the impact of
Democratic vote share just at 50%, on various demographic factors
(Figure 35).



Figure 34. A picture with and without a discontinuity in the density. Reprinted
from Journal of Econometrics, 142, J. McCrary, “Manipulation of the Running
Variable in the Regression Discontinuity Design: A Design Test,” 698–714. ©
2008, with permission from Elsevier.

This test is basically what is sometimes called a placebo test. That
is, you are looking for there to be no effects where there shouldn’t be
any. So a third kind of test is an extension of that—just as there
shouldn’t be effects at the cutoff on pretreatment values, there
shouldn’t be effects on the outcome of interest at arbitrarily chosen
cutoffs. Imbens and Lemieux [2008] suggest looking at one side of
the discontinuity, taking the median value of the running variable in
that section, and pretending it was a discontinuity,  Then test
whether there is a discontinuity in the outcome at  You do not
want to find anything.

Nonrandom heaping on the running variable. Almond et al. [2010] is
a fascinating study. The authors are interested in estimating the
causal effect of medical expenditures on health outcomes, in part
because many medical technologies, while effective, may not justify
the costs associated with their use. Determining their effectiveness is
challenging given that medical resources are, we hope, optimally
assigned to patients based on patient potential outcomes. To put it a
different way, if the physician perceives that an intervention will have
the best outcome, then that is likely a treatment that will be assigned
to the patient. This violates independence, and more than likely, if
the endogeneity of the treatment is deep enough, controlling for
selection directly will be tough, if not impossible. As we saw with our



earlier example of the perfect doctor, such nonrandom assignment of
interventions can lead to confusing correlations. Counterintuitive
correlations may be nothing more than selection bias.

Figure 35. Panels refer to (top left to bottom right) district characteristics:
real income, percentage high school degree, percentage black, and
percentage eligible to vote. Circles represent the average characteristic within
intervals of 0.01 in Democratic vote share. The continuous line represents the
predicted values from a fourth-order polynomial in vote share fitted separately
for points above and below the 50% threshold. The dotted line represents the
95% confidence interval. Reprinted from Lee, D.S., Moretti, E., and Butler, M.
J. (2004). “Do Voters Affect or Elect Policies: Evidence from the U.S. House.”
Quarterly Journal of Economics, 119(3):807–859. Permission from Oxford
University Press.

But Almond et al. [2010] had an ingenious insight—in the United
States, it is typically the case that babies with a very low birth weight
receive heightened medical attention. This categorization is called
the “very low birth weight” range, and such low birth weight is quite



dangerous for the child. Using administrative hospital records linked
to mortality data, the authors find that the 1-year infant mortality
decreases by around 1 percentage point when the child’s birth
weight is just below the 1,500-gram threshold compared to those
born just above. Given the mean 1-year mortality of 5.5%, this
estimate is sizable, suggesting that the medical interventions
triggered by the very-low-birth-weight classification have benefits
that far exceed their costs.

Barreca et al. [2011] and Barreca et al. [2016] highlight some of
econometric issues related to what they call “heaping” on the running
variable. Heaping is when there is an excess number of units at
certain points along the running variable. In this case, it appeared to
be at regular 100-gram intervals and was likely caused by a
tendency for hospitals to round to the nearest integer. A visualization
of this problem can be seen in the original Almond et al. [2010],
which I reproduce here in Figure 36. The long black lines appearing
regularly across the birth-weight distribution are excess mass of
children born at those numbers. This sort of event is unlikely to occur
naturally in nature, and it is almost certainly caused by either sorting
or rounding. It could be due to less sophisticated scales or, more
troubling, to staff rounding a child’s birth weight to 1,500 grams in
order to make the child eligible for increased medical attention.

Almond et al. [2010] attempt to study this more carefully using the
conventional McCrary density test and find no clear, statistically
significant evidence for sorting on the running variable at the 1,500-
gram cutoff. Satisfied, they conduct their main analysis, in which they
find a causal effect of around a 1-percentage-point reduction in 1-
year mortality.

The focus of Barreca et al. [2011] and Barreca et al. [2016] is very
much on the heaping phenomenon shown in Figure 36. Part of the
strength of their work, though, is their illustration of some of the
shortcomings of a conventional McCrary density test. In this case,
the data heap at 1,500 grams appears to be babies whose mortality
rates are unusually high. These children are outliers compared to
units to both the immediate left and the immediate right. It is
important to note that such events would not occur naturally; there is



no reason to believe that nature would produce heaps of children
born with outlier health defects every 100 grams. The authors
comment on what might be going on:

Figure 36. Distribution of births by gram. Reprinted from Almond, D., Doyle,
J. J., Kowalski, A., and Williams, H. (2010). “Estimating Returns to Medical
Care: Evidence from at-risk Newborns.” The Quarterly Journal of Economics,
125(2):591–634. Permission from Oxford University Press.

This [heaping at 1,500 grams] may be a signal that poor-quality hospitals
have relatively high propensities to round birth weights but is also consistent
with manipulation of recorded birth weights by doctors, nurses, or parents to
obtain favorable treatment for their children. Barreca et al. [2011] show that
this nonrandom heaping leads one to conclude that it is “good” to be strictly
less than any 100-g cutoff between 1,000 and 3,000 grams.

Since estimation in an RDD compares means as we approach the
threshold from either side, the estimates should not be sensitive to
the observations at the thresholds itself. Their solution is a so-called
“donut hole” RDD, wherein they remove units in the vicinity of 1,500
grams and reestimate the model. Insofar as units are dropped, the
parameter we are estimating at the cutoff has become an even more
unusual type of local average treatment effect that may be even less
informative about the average treatment effects that policymakers
are desperate to know. But the strength of this rule is that it allows
for the possibility that units at the heap differ markedly due to
selection bias from those in the surrounding area. Dropping these



units reduces the sample size by around 2% but has very large
effects on 1-year mortality, which is approximately 50% lower than
what was found by Almond et al. [2010].

These companion papers help us better understand some of the
ways in which selection bias can creep into the RDD. Heaping is not
the end of the world, which is good news for researchers facing such
a problem. The donut hole RDD can be used to circumvent some of
the problems. But ultimately this solution involves dropping
observations, and insofar as your sample size is small relative to the
number of heaping units, the donut hole approach could be
infeasible. It also changes the parameter of interest to be estimated
in ways that may be difficult to understand or explain. Caution with
nonrandom heaping along the running variable is probably a good
thing.

Replicating a Popular Design: The Close Election
Within RDD, there is a particular kind of design that has become
quite popular, the close-election design. Essentially, this design
exploits a feature of American democracies wherein winners in
political races are declared when a candidate gets the minimum
needed share of votes. Insofar as very close races represent
exogenous assignments of a party’s victory, which I’ll discuss below,
then we can use these close elections to identify the causal effect of
the winner on a variety of outcomes. We may also be able to test
political economy theories that are otherwise nearly impossible to
evaluate.

The following section has two goals. First, to discuss in detail the
close election design using the classic Lee et al. [2004]. Second, to
show how to implement the close-election design by replicating
several parts of Lee et al. [2004].

Do Politicians or Voters Pick Policies? The big question motivating
Lee et al. (2004) has to do with whether and in which way voters
affect policy. There are two fundamentally different views of the role



of elections in a representative democracy: convergence theory and
divergence theory.

The convergence theory states that heterogeneous voter ideology
forces each candidate to moderate his or her position (e.g., similar to
the median voter theorem):

Competition for votes can force even the most partisan Republicans and
Democrats to moderate their policy choices. In the extreme case,
competition may be so strong that it leads to “full policy convergence”:
opposing parties are forced to adopt identical policies. [Lee et al. 2004, 807]

Divergence theory is a slightly more commonsense view of
political actors. When partisan politicians cannot credibly commit to
certain policies, then convergence is undermined and the result can
be full policy “divergence.” Divergence is when the winning
candidate, after taking office, simply pursues her most-preferred
policy. In this extreme case, voters are unable to compel candidates
to reach any kind of policy compromise, and this is expressed as two
opposing candidates choosing very different policies under different
counterfactual victory scenarios.

Lee et al. [2004] present a model, which I’ve simplified. Let R and
D be candidates in a congressional race. The policy space is a
single dimension where D’s and R’s policy preferences in a period
are quadratic loss functions, u(l) and v(l), and l is the policy variable.
Each player has some bliss point, which is his or her most preferred
location along the unidimensional policy range. For Democrats, it’s l∗
= c(> 0), and for Republicans it’s l∗=0. Here’s what this means.

Ex ante, voters expect the candidate to choose some policy and
they expect the candidate to win with probability P(xe,ye), where xe

and ye are the policies chosen by Democrats and Republicans,
respectively. When x>ye, then 

P∗ represents the underlying popularity of the Democratic Party, or
put differently, the probability that D would win if the policy chosen x
equaled the Democrat’s bliss point c.

The solution to this game has multiple Nash equilibria, which I
discuss now.



1. Partial/complete convergence: Voters affect policies.

• The key result under this equilibrium is 

• Interpretation: If we dropped more Democrats into the district from a
helicopter, it would exogenously increase P∗ and this would result in
candidates changing their policy positions, i.e., 

2. Complete divergence: Voters elect politicians with fixed policies who do
whatever they want to do.13

• Key result is that more popularity has no effect on policies. That is, 

• An exogenous shock to P∗ (i.e., dropping Democrats into the district)
does nothing to equilibrium policies. Voters elect politicians who then do
whatever they want because of their fixed policy preferences.

The potential roll-call voting record outcomes of the candidate
following some election is

where Dt indicates whether a Democrat won the election. That is,
only the winning candidate’s policy is observed. This expression can
be transformed into regression equations:

where α0 and β0 are constants.
This equation can’t be directly estimated because we never

observe P∗. But suppose we could randomize Dt. Then Dt would be
independent of  and εt. Then taking conditional expectations with
respect to Dt, we get:



The “elect” component is  and is estimated as the
difference in mean voting records between the parties at time t. The
fraction of districts won by Democrats in t + 1 is an estimate of 

 Because we can estimate the total effect, γ, of a
Democrat victory in t on RCt+1, we can net out the elect component
to implicitly get the “effect” component.

But random assignment of Dt is crucial. For without it, this equation
would reflect π1 and selection (i.e., Democratic districts have more
liberal bliss points). So the authors aim to randomize Dt using a
RDD, which I’ll now discuss in detail.

Replication exercise. There are two main data sets in this project.
The first is a measure of how liberal an official voted. This is
collected from the Americans for Democratic Action (ADA) linked
with House of Representatives election results for 1946–1995.
Authors use the ADA score for all US House representatives from
1946 to 1995 as their voting record index. For each Congress, the
ADA chose about twenty-five high-profile roll-call votes and created
an index varying from 0 to 100 for each representative. Higher
scores correspond to a more “liberal” voting record. The running
variable in this study is the vote share. That is the share of all votes



that went to a Democrat. ADA scores are then linked to election
returns data during that period.

Recall that we need randomization of Dt. The authors have a
clever solution. They will use arguably exogenous variation in
Democratic wins to check whether convergence or divergence is
correct. If convergence is true, then Republicans and Democrats
who just barely won should vote almost identically, whereas if
divergence is true, they should vote differently at the margins of a
close race. This “at the margins of a close race” is crucial because
the idea is that it is at the margins of a close race that the distribution
of voter preferences is the same. And if voter preferences are the
same, but policies diverge at the cutoff, then it suggests politicians
and not voters are driving policy making.

Table 45. Original results based on ADA scores—close elections sample.

Note: Standard errors in parentheses. The unit of observation is a district-
congressional session. The sample includes only observations where the
Democrat vote share at time t is strictly between 48% and 52%. The estimated
gap is the difference in the average of the relevant variable for observations for
which the Democrat vote share at time t is strictly between 50% and 52% and
observations for which the Democrat vote share at time t is strictly between
48% and 50%. Time t and t+1 refer to congressional sessions. ADAt is the
adjusted ADA voting score. Higher ADA scores correspond to more liberal roll-
call voting records. Sample size is 915.

The exogenous shock comes from the discontinuity in the running
variable. At a vote share of just above 0.5, the Democratic candidate
wins. They argue that just around that cutoff, random chance
determined the Democratic win—hence the random assignment of
Dt [Cattaneo et al., 2015]. Table 45 is a reproduction of Cattaneo et
al.’s main results. The effect of a Democratic victory increases liberal



voting by 21 points in the next period, 48 points in the current period,
and the probability of reelection by 48%. The authors find evidence
for both divergence and incumbency advantage using this design.
Let’s dig into the data ourselves now and see if we can find where
the authors are getting these results. We will examine the results
around Table 45 by playing around with the data and different
specifications.



Table 46. Replicated results based on ADA scores—close elections sample.

Note: Cluster robust standard errors in parentheses. * p<0.10, ** p<0.05, ***
p<0.01

We reproduce regression results from Lee, Moretti, and Butler in
Table 46. While the results are close to Lee, Moretti, and Butler’s
original table, they are slightly different. But ignore that for now. The
main thing to see is that we used regressions limited to the window
right around the cutoff to estimate the effect. These are local
regressions in the sense that they use data close to the cutoff.
Notice the window we chose—we are only using observations
between 0.48 and 0.52 vote share. So this regression is estimating
the coefficient on Dt right around the cutoff. What happens if we use
all the data?



Table 47. Results based on ADA scores—full sample.

Note: Cluster robust standard errors in parentheses. * p<0.10, ** p<0.05, ***
p<0.01

Notice that when we use all of the data, we get somewhat different
effects (Table 47). The effect on future ADA scores gets larger by 10
points, but the contemporaneous effect gets smaller. The effect on
incumbency, though, increases considerably. So here we see that



simply running the regression yields different estimates when we
include data far from the cutoff itself.

Neither of these regressions included controls for the running
variable though. It also doesn’t use the recentering of the running
variable. So let’s do both. We will simply subtract 0.5 from the
running variable so that values of 0 are where the vote share equals
0.5, negative values are Democratic vote shares less than 0.5, and
positive values are Democratic vote shares above 0.5. To do this,
type in the following lines:

We report our analysis from the programming in Table 48. While
the incumbency effect falls closer to what Lee et al. [2004] find, the



effects are still quite different.
It is common, though, to allow the running variable to vary on

either side of the discontinuity, but how exactly do we implement
that? Think of it—we need for a regression line to be on either side,
which means necessarily that we have two lines left and right of the
discontinuity. To do this, we need an interaction—specifically an
interaction of the running variable with the treatment variable. To
implement this in Stata, we can use the code shown in lmb_4.do.

Table 48. Results based on ADA scores—full sample.

Note: Cluster robust standard errors in parentheses. *p < 0.10. **p < 0.05. ***p
< 0.01.



In Table 49, we report the global regression analysis with the
running variable interacted with the treatment variable. This pulled
down the coefficients somewhat, but they remain larger than what
was found when we used only those observations within 0.02 points
of the 0.5. Finally, let’s estimate the model with a quadratic.



Including the quadratic causes the estimated effect of a
democratic victory on future voting to fall considerably (see Table
50). The effect on contemporaneous voting is smaller than what Lee
et al. [2004] find, as is the incumbency effect. But the purpose here
is simply to illustrate the standard steps using global regressions.

But notice, we are still estimating global regressions. And it is for
that reason that the coefficient is larger. This suggests that there
exist strong outliers in the data that are causing the distance at c0 to
spread more widely. So a natural solution is to again limit our
analysis to a smaller window. What this does is drop the
observations far away from c0 and omit the influence of outliers from
our estimation at the cutoff. Since we used +/−−0.02 last time, we’ll
use +/−−0.05 this time just to mix things up.



Table 49. Results based on ADA scores—full sample with linear interactions.

Note: Cluster robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p
< 0.01

Table 50. Results based on ADA scores—full sample with linear and
quadratic interactions.

Note: Cluster robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p
< 0.01





Table 51. Results based on ADA scores—close election sample with linear
and quadratic interactions.

Note: Cluster robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p
< 0.01

As can be seen in Table 51, when we limit our analysis to +/− 0.05
around the cutoff, we are using more observations away from the
cutoff than we used in our initial analysis. That’s why we only have
2,441 observations for analysis as opposed to the 915 we had in our
original analysis. But we also see that including the quadratic
interaction pulled the estimated size on future voting down
considerably, even when using the smaller sample.

But putting that aside, let’s talk about all that we just did. First we
fit a model without controlling for the running variable. But then we
included the running variable, introduced in a variety of ways. For
instance, we interacted the variable of Democratic vote share with
the democratic dummy, as well as including a quadratic. In all this
analysis, we extrapolated trends lines from the running variable
beyond the support of the data to estimate local average treatment
effects right at the cutoff.

But we also saw that the inclusion of the running variable in any
form tended to reduce the effect of a victory for Democrats on future
Democratic voting patterns, which was interesting. Lee et al. [2004]
original estimate of around 21 is attenuated considerably when we
include controls for the running variable, even when we go back to
estimating very local flexible regressions. While the effect remains
significant, it is considerably smaller, whereas the immediate effect
remains quite large.

But there are still other ways to explore the impact of the treatment
at the cutoff. For instance, while Hahn et al. [2001] clarified



assumptions about RDD—specifically, continuity of the conditional
expected potential outcomes—they also framed estimation as a
nonparametric problem and emphasized using local polynomial
regressions. What exactly does this mean though in practice?

Nonparametric methods mean a lot of different things to different
people in statistics, but in RDD contexts, the idea is to estimate a
model that doesn’t assume a functional form for the relationship
between the outcome variable (Y) and the running variable (X). The
model would be something like this:

A very basic method would be to calculate E[Y] for each bin on X,
like a histogram. And Stata has an option to do this called cmogram,
created by Christopher Robert. The program has a lot of useful
options, and we can re-create important figures from Lee et al.
[2004]. Figure 37 shows the relationship between the Democratic
win (as a function of the running variable, Democratic vote share)
and the candidates, second-period ADA score.



Figure 37. Showing total effect of initial win on future ADA scores. Reprinted
from Lee, D. S., Moretti, E., and Butler, M. J. (2004). “Do Voters Affect or Elect
Policies: Evidence from the U.S. House.” Quarterly Journal of Economics,
119(3):807–859. Permission from Oxford University Press.

To reproduce this, there are a few options. You could manually
create this figure yourself using either the “twoway” command in
Stata or “ggplot” in R. But I’m going to show you using the canned
cmogram routine that was created, as it’s a quick-and-dirty way to
get some information about the data.





Figure 38 shows the output from this program. Notice the
similarities between what we produced here and what Lee et al.
[2004] produced in their figure. The only differences are subtle
changes in the binning used for the two figures.



Figure 38. Using cmogram with quadratic fit and confidence intervals.
Reprinted from Lee, D. S., Moretti, E., and Butler, M. J. (2004). “Do Voters
Affect or Elect Policies: Evidence from the U.S. House.” Quarterly Journal of
Economics, 119(3):807–859.



Figure 39. Using cmogram with linear fit. Reprinted from Lee, D. S., Moretti,
E., and Butler, M. J. (2004). “Do Voters Affect or Elect Policies: Evidence from
the U.S. House.” Quarterly Journal of Economics, 119(3):807–859.

We have options other than a quadratic fit, though, and it’s useful
to compare this graph with one in which we only fit a linear model.
Now, because there are strong trends in the running variable, we
probably just want to use the quadratic, but let’s see what we get
when we use simpler straight lines.

Figure 39 shows what we get when we only use a linear fit of the
data left and right of the cutoff. Notice the influence that outliers far
from the actual cutoff play in the estimate of the causal effect at the
cutoff. Some of this would go away if we restricted the bandwidth to
be shorter distances to and from the cutoff, but I leave it to you to do
that.

Finally, we can use a lowess fit. A lowess fit more or less crawls
through the data and runs small regression on small cuts of data.



This can give the figure a zigzag appearance. We nonetheless show
it in Figure 40.

Figure 40. Using cmogram with lowess fit. Reprinted from Lee, D. S.,
Moretti, E., and Butler, M. J. (2004). “Do Voters Affect or Elect Policies:
Evidence from the U.S. House.” Quarterly Journal of Economics, 119(3):807–
859.

If there don’t appear to be any trends in the running variable, then
the polynomials aren’t going to buy you much. Some very good
papers only report a linear fit because there weren’t very strong
trends to begin with. For instance, consider Carrell et al. [2011].
Those authors are interested in the causal effect of drinking on
academic test outcomes for students at the Air Force Academy.
Their running variable is the precise age of the student, which they
have because they know the student’s date of birth and they know
the date of every exam taken at the Air Force Academy. Because the
Air Force Academy restricts students’ social life, there is a starker



increase in drinking at age 21 on its campus than might be the case
for a more a typical university campus. They examined the causal
effect of drinking age on normalized grades using RDD, but because
there weren’t strong trends in the data, they presented a graph with
only a linear fit. Your choice should be in large part based on what,
to your eyeball, is the best fit of the data.

Hahn et al. [2001] have shown that one-sided kernel estimation
such as lowess may suffer from poor properties because the point of
interest is at the boundary (i.e., the discontinuity). This is called the
“boundary problem.” They propose using local linear nonparametric
regressions instead. In these regressions, more weight is given to
the observations at the center.

You can also estimate kernel-weighted local polynomial
regressions. Think of it as a weighted regression restricted to a
window like we’ve been doing (hence the word “local”) where the
chosen kernel provides the weights. A rectangular kernel would give
the same results as E[Y] at a given bin on X, but a triangular kernel
would give more importance to observations closest to the center.
This method will be sensitive to the size of the bandwidth chosen.
But in that sense, it’s similar to what we’ve been doing. Figure 41
shows this visually.





A couple of final things. First, recall the continuity assumption.
Because the continuity assumption specifically involves continuous
conditional expectation functions of the potential outcomes
throughout the cutoff, it therefore is untestable. That’s right—it’s an
untestable assumption. But, what we can do is check for whether
there are changes in the conditional expectation functions for other
exogenous covariates that cannot or should not be changing as a
result of the cutoff. So it’s very common to look at things like race or
gender around the cutoff. You can use these same methods to do
that, but I do not do them here. Any RDD paper will always involve
such placebos; even though they are not direct tests of the continuity
assumption, they are indirect tests. Remember, when you are
publishing, your readers aren’t as familiar with this thing you’re
studying, so your task is explain to readers what you know.
Anticipate their objections and the sources of their skepticism. Think
like them. Try to put yourself in a stranger’s shoes. And then test
those skepticisms to the best of your ability.



Second, we saw the importance of bandwidth selection, or
window, for estimating the causal effect using this method, as well as
the importance of selection of polynomial length. There’s always a
tradeoff when choosing the bandwidth between bias and variance—
the shorter the window, the lower the bias, but because you have
less data, the variance in your estimate increases. Recent work has
been focused on optimal bandwidth selection, such as Imbens and
Kalyanaraman [2011] and Calonico et al. [2014]. The latter can be
implemented with the user-created rdrobust command. These
methods ultimately choose optimal bandwidths that may differ left
and right of the cutoff based on some bias-variance trade-off. Let’s
repeat our analysis using this nonparametric method. The coefficient
is 46.48 with a standard error of 1.24.

Figure 41. Local linear nonparametric regressions.



This method, as we’ve repeatedly said, is data-greedy because it
gobbles up data at the discontinuity. So ideally these kinds of
methods will be used when you have large numbers of observations
in the sample so that you have a sizable number of observations at
the discontinuity. When that is the case, there should be some
harmony in your findings across results. If there isn’t, then you may
not have sufficient power to pick up this effect.

Finally, we look at the implementation of the McCrary density test.
We will implement this test using local polynomial density estimation
[Cattaneo et al., 2019]. This requires installing two files in Stata.
Visually inspecting the graph in Figure 42, we see no signs that there
was manipulation in the running variable at the cutoff.



Figure 42. McCrary density test using local linear nonparametric
regressions.



Concluding remarks about close-election designs. Let’s circle back
to the close-election design. The design has since become
practically a cottage industry within economics and political science.
It has been extended to other types of elections and outcomes. One
paper I like a lot used close gubernatorial elections to examine the
effect of Democratic governors on the wage gap between workers of
different races [Beland, 2015]. There are dozens more.

But a critique from Caughey and Sekhon [2011] called into
question the validity of Lee’s analysis on the House elections. They
found that bare winners and bare losers in US House elections
differed considerably on pretreatment covariates, which had not
been formally evaluated by Lee et al. [2004]. And that covariate
imbalance got even worse in the closest elections. Their conclusion
is that the sorting problems got more severe, not less, in the closest
of House races, suggesting that these races could not be used for an
RDD.



At first glance, it appeared that this criticism by Caughey and
Sekhon [2011] threw cold water on the entire close-election design,
but we since know that is not the case. It appears that the Caughey
and Sekhon [2011] criticism may have been only relevant for a
subset of House races but did not characterize other time periods or
other types of races. Eggers et al. [2014] evaluated 40,000 close
elections, including the House in other time periods, mayoral races,
and other types of races for political offices in the US and nine other
countries. No other case that they encountered exhibited the type of
pattern described by Caughey and Sekhon [2011]. Eggers et al.
(2014) conclude that the assumptions behind RDD in the close-
election design are likely to be met in a wide variety of electoral
settings and is perhaps one of the best RD designs we have going
forward.

Regression Kink Design
Many times, the concept of a running variable shifting a unit into
treatment and in turn causing a jump in some outcome is sufficient.
But there are some instances in which the idea of a “jump” doesn’t
describe what happens. A couple of papers by David Card and
coauthors have extended the regression discontinuity design in order
to handle these different types of situations. The most notable is
Card et al. [2015], which introduced a new method called regression
kink design, or RKD. The intuition is rather simple. Rather than the
cutoff causing a discontinuous jump in the treatment variable at the
cutoff, it changes the first derivative, which is known as a kink. Kinks
are often embedded in policy rules, and thanks to Card et al. [2015],
we can use kinks to identify the causal effect of a policy by exploiting
the jump in the first derivative.

Card et al.’s [2015] paper applies the design to answer the
question of whether the level of unemployment benefits affects the
length of time spent unemployed in Austria. Unemployment benefits
are based on income in a base period. There is then a minimum
benefit level that isn’t binding for people with low earnings. Then
benefits are 55% of the earnings in the base period. There is a
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maximum benefit level that is then adjusted every year, which
creates a discontinuity in the schedule.

Figure 43 shows the relationship between base earnings and
unemployment benefits around the discontinuity. There’s a visible
kink in the empirical relationship between average benefits and base
earnings. You can see this in the sharp decline in the slope of the
function as base-year earnings pass the threshold. Figure 44
presents a similar picture, but this time of unemployment duration.
Again, there is a clear kink as base earnings pass the threshold. The
authors conclude that increases in unemployment benefits in the
Austrian context exert relatively large effects on unemployment
duration.

Figure 43. RKD kinks. Reprinted from Card, D., Lee, D. S., Pei, Z., and
Weber, A. (2015). “Inference on Causal Effects in a Generalized Regression
Kink Design.” Econometrica, 84(6):2453–2483. Copyright ©2015 Wiley. Used
with permission from John Wiley and Sons.

Conclusion



The regression discontinuity design is often considered a winning
design because of its upside in credibly identifying causal effects. As
with all designs, its credibility only comes from deep institutional
knowledge, particularly surrounding the relationship between the
running variable, the cutoff, treatment assignment, and the outcomes
themselves. Insofar as one can easily find a situation in which a
running variable passing some threshold leads to units being
siphoned off into some treatment, then if continuity is believable,
you’re probably sitting on a great opportunity, assuming you can use
it to do something theoretically interesting and policy relevant to
others.

Figure 44. Unemployment duration. Reprinted from Card, D., Lee, D. S., Pei,
Z., and Weber, A. (2015). “Inference on Causal Effects in a Generalized
Regression Kink Design.” Econometrica, 84(6):2453–2483. Copyright © 2015
Wiley. Used with permission from John Wiley and Sons.

Regression discontinuity design opportunities abound, particularly
within firms and government agencies, for no other reason than that



these organizations face scarcity problems and must use some
method to ration a treatment. Randomization is a fair way to do it,
and that is often the method used. But a running variable is another
method. Routinely, organizations will simply use a continuous score
to assign treatments by arbitrarily picking a cutoff above which
everyone receives the treatment. Finding these can yield a cheap yet
powerfully informative natural experiment. This chapter attempted to
lay out the basics of the design. But the area continues to grow at a
lightning pace. So I encourage you to see this chapter as a starting
point, not an ending point.

Notes
1 Thistlehwaite and Campbell [1960] studied the effect of merit awards on

future academic outcomes. Merit awards were given out to students based on
a score, and anyone with a score above some cutoff received the merit award,
whereas everyone below that cutoff did not. Knowing the treatment
assignment allowed the authors to carefully estimate the causal effect of merit
awards on future academic performance.

2 Hat tip to John Holbein for giving me these data.
3 Think about it for a moment. The backdoor criterion calculates differences

in expected outcomes between treatment and control for a given value of X.
But if the assignment variable only moves units into treatment when X passes
some cutoff, then such calculations are impossible because there will not be
units in treatment and control for any given value of X.

4 Mark Hoekstra is one of the more creative microeconomists I have met
when it comes to devising compelling strategies for identifying causal effects in
observational data, and this is one of my favorite papers by him.

5 “Don’t be a jerk” applies even to situations when you aren’t seeking
proprietary data.

6 Van der Klaauw [2002] called the running variable the “selection variable.”
This is because Van der Klaauw [2002] is an early paper in the new literature,
and the terminology hadn’t yet been hammered out. But here they mean the
same thing.

7 Stata’s poly command estimates kernel-weighted local polynomial
regression.

8 RDHonest is available at https://github.com/kolesarm/RDHonest.
9 I discuss these assumptions and diagnostics in greater detail later in the

chapter on instrument variables.

https://github.com/kolesarm/RDHonest


10 In those situations, anyway, where the treatment is desirable to the units.
11 https://sites.google.com/site/rdpackages/rddensity.
12 http://cran.r-project.org/web/packages/rdd/rdd.eps.
13 The honey badger doesn’t care. It takes what it wants. See

https://www.youtube.com/watch?v=4r7wHMg5Yjg.

https://sites.google.com/site/rdpackages/rddensity
http://cran.r-project.org/web/packages/rdd/rdd.eps
https://www.youtube.com/watch?v=4r7wHMg5Yjg


Difference-in-Differences

What’s the difference between me and you?
About five bank accounts, three ounces, and two vehicles.
Dr. Dre

The difference-in-differences design is an early quasi-experimental
identification strategy for estimating causal effects that predates the
randomized experiment by roughly eighty-five years. It has become
the single most popular research design in the quantitative social
sciences, and as such, it merits careful study by researchers
everywhere.1 In this chapter, I will explain this popular and important
research design both in its simplest form, where a group of units is
treated at the same time, and the more common form, where groups
of units are treated at different points in time. My focus will be on the
identifying assumptions needed for estimating treatment effects,
including several practical tests and robustness exercises commonly
performed, and I will point you to some of the work on difference-in-
differences design (DD) being done at the frontier of research. I have
included several replication exercises as well.

John Snow’s Cholera Hypothesis
When thinking about situations in which a difference-in-differences
design can be used, one usually tries to find an instance where a
consequential treatment was given to some people or units but
denied to others “haphazardly.” This is sometimes called a “natural
experiment” because it is based on naturally occurring variation in
some treatment variable that affects only some units over time. All
good difference-in-differences designs are based on some kind of
natural experiment. And one of the most interesting natural
experiments was also one of the first difference-in-differences
designs. This is the story of how John Snow convinced the world that



cholera was transmitted by water, not air, using an ingenious natural
experiment [Snow, 1855].

Cholera is a vicious disease that attacks victims suddenly, with
acute symptoms such as vomiting and diarrhea. In the nineteenth
century, it was usually fatal. There were three main epidemics that
hit London, and like a tornado, they cut a path of devastation through
the city. Snow, a physician, watched as tens of thousands suffered
and died from a mysterious plague. Doctors could not help the
victims because they were mistaken about the mechanism that
caused cholera to spread between people.

The majority medical opinion about cholera transmission at that
time was miasma, which said diseases were spread by microscopic
poisonous particles that infected people by floating through the air.
These particles were thought to be inanimate, and because
microscopes at that time had incredibly poor resolution, it would be
years before microorganisms would be seen. Treatments, therefore,
tended to be designed to stop poisonous dirt from spreading through
the air. But tried and true methods like quarantining the sick were
strangely ineffective at slowing down this plague.

John Snow worked in London during these epidemics. Originally,
Snow—like everyone—accepted the miasma theory and tried many
ingenious approaches based on the theory to block these airborne
poisons from reaching other people. He went so far as to cover the
sick with burlap bags, for instance, but the disease still spread.
People kept getting sick and dying. Faced with the theory’s failure to
explain cholera, he did what good scientists do—he changed his
mind and began look for a new explanation.

Snow developed a novel theory about cholera in which the active
agent was not an inanimate particle but was rather a living organism.
This microorganism entered the body through food and drink, flowed
through the alimentary canal where it multiplied and generated a
poison that caused the body to expel water. With each evacuation,
the organism passed out of the body and, importantly, flowed into
England’s water supply. People unknowingly drank contaminated
water from the Thames River, which caused them to contract
cholera. As they did, they would evacuate with vomit and diarrhea,



which would flow into the water supply again and again, leading to
new infections across the city. This process repeated through a
multiplier effect which was why cholera would hit the city in epidemic
waves.

Snow’s years of observing the clinical course of the disease led
him to question the usefulness of miasma to explain cholera. While
these were what we would call “anecdote,” the numerous
observations and imperfect studies nonetheless shaped his thinking.
Here’s just a few of the observations which puzzled him. He noticed
that cholera transmission tended to follow human commerce. A
sailor on a ship from a cholera-free country who arrived at a cholera-
stricken port would only get sick after landing or taking on supplies;
he would not get sick if he remained docked. Cholera hit the poorest
communities worst, and those people were the very same people
who lived in the most crowded housing with the worst hygiene. He
might find two apartment buildings next to one another, one would be
heavily hit with cholera, but strangely the other one wouldn’t. He then
noticed that the first building would be contaminated by runoff from
privies but the water supply in the second building was cleaner.
While these observations weren’t impossible to reconcile with
miasma, they were definitely unusual and didn’t seem obviously
consistent with miasmis.

Snow tucked away more and more anecdotal evidence like these.
But, while this evidence raised some doubts in his mind, he was not
convinced. He needed a smoking gun if he were to eliminate all
doubt that cholera was spread by water, not air. But where would he
find that evidence? More importantly, what would evidence like that
even look like?

Let’s imagine the following thought experiment. If Snow was a
dictator with unlimited wealth and power, how could he test his
theory that cholera is waterborne? One thing he could do is flip a
coin over each household member—heads you drink from the
contaminated Thames, tails you drink from some uncontaminated
source. Once the assignments had been made, Snow could simply
compare cholera mortality between the two groups. If those who



drank the clean water were less likely to contract cholera, then this
would suggest that cholera was waterborne.

Knowledge that physical randomization could be used to identify
causal effects was still eighty-five years away. But there were other
issues besides ignorance that kept Snow from physical
randomization. Experiments like the one I just described are also
impractical, infeasible, and maybe even unethical—which is why
social scientists so often rely on natural experiments that mimic
important elements of randomized experiments. But what natural
experiment was there? Snow needed to find a situation where
uncontaminated water had been distributed to a large number of
people as if by random chance, and then calculate the difference
between those those who did and did not drink contaminated water.
Furthermore, the contaminated water would need to be allocated to
people in ways that were unrelated to the ordinary determinants of
cholera mortality, such as hygiene and poverty, implying a degree of
balance on covariates between the groups. And then he
remembered—a potential natural experiment in London a year
earlier had reallocated clean water to citizens of London. Could this
work?

In the 1800s, several water companies served different areas of
the city. Some neighborhoods were even served by more than one
company. They took their water from the Thames, which had been
polluted by victims’ evacuations via runoff. But in 1849, the Lambeth
water company had moved its intake pipes upstream higher up the
Thames, above the main sewage discharge point, thus giving its
customers uncontaminated water. They did this to obtain cleaner
water, but it had the added benefit of being too high up the Thames
to be infected with cholera from the runoff. Snow seized on this
opportunity. He realized that it had given him a natural experiment
that would allow him to test his hypothesis that cholera was
waterborne by comparing the households. If his theory was right,
then the Lambeth houses should have lower cholera death rates
than some other set of households whose water was infected with
runoff—what we might call today the explicit counterfactual. He



found his explicit counterfactual in the Southwark and Vauxhall
Waterworks Company.

Unlike Lambeth, the Southwark and Vauxhall Waterworks
Company had not moved their intake point upstream, and Snow
spent an entire book documenting similarities between the two
companies’ households. For instance, sometimes their service cut
an irregular path through neighborhoods and houses such that the
households on either side were very similar; the only difference
being they drank different water with different levels of contamination
from runoff. Insofar as the kinds of people that each company
serviced were observationally equivalent, then perhaps they were
similar on the relevant unobservables as well.

Snow meticulously collected data on household enrollment in
water supply companies, going door to door asking household heads
the name of their utility company. Sometimes these individuals didn’t
know, though, so he used a saline test to determine the source
himself [Coleman, 2019]. He matched those data with the city’s data
on the cholera death rates at the household level. It was in many
ways as advanced as any study we might see today for how he
carefully collected, prepared, and linked a variety of data sources to
show the relationship between water purity and mortality. But he also
displayed scientific ingenuity for how he carefully framed the
research question and how long he remained skeptical until the
research design’s results convinced him otherwise. After combining
everthing, he was able to generate extremely persuasive evidence
that influenced policymakers in the city.2

Snow wrote up all of his analysis in a manuscript entitled On the
Mode of Communication of Cholera [Snow, 1855]. Snow’s main
evidence was striking, and I will discuss results based on Table XII
and Table IX (not shown) in Table 69. The main difference between
my version and his version of Table XII is that I will use his data to
estimate a treatment effect using difference-in-differences.

Table XII. In 1849, there were 135 cases of cholera per 10,000
households at Southwark and Vauxhall and 85 for Lambeth. But in



1854, there were 147 per 100,000 in Southwark and Vauxhall,
whereas Lambeth’s cholera cases per 10,000 households fell to 19.

Table 69. Modified Table XII (Snow 1854).

While Snow did not explicitly calculate the difference-in-
differences, the ability to do so was there [Coleman, 2019]. If we
difference Lambeth’s 1854 value from its 1849 value, followed by the
same after and before differencing for Southwark and Vauxhall, we
can calculate an estimate of the ATT equaling 78 fewer deaths per
10,000. While Snow would go on to produce evidence showing
cholera deaths were concentrated around a pump on Broad Street
contaminated with cholera, he allegedly considered the simple
difference-in-differences the more convincing test of his hypothesis.

The importance of the work Snow undertook to understand the
causes of cholera in London cannot be overstated. It not only lifted
our ability to estimate causal effects with observational data, it
advanced science and ultimately saved lives. Of Snow’s work on the
cause of cholera transmission, Freedman [1991] states:

The force of [Snow’s] argument results from the clarity of the prior reasoning,
the bringing together of many different lines of evidence, and the amount of
shoe leather Snow was willing to use to get the data. Snow did some brilliant
detective work on nonexperimental data. What is impressive is not the
statistical technique but the handling of the scientific issues. He made steady
progress from shrewd observation through case studies to analyze
ecological data. In the end, he found and analyzed a natural experiment.
[298]

Estimation
A simple table. Let’s look at this example using some tables, which
hopefully will help give you an idea of the intuition behind DD, as well



as some of its identifying assumptions.3 Assume that the intervention
is clean water, which I’ll write as D, and our objective is to estimate
D’s causal effect on cholera deaths. Let cholera deaths be
represented by the variable Y. Can we identify the causal effect of D
if we just compare the post-treatment 1854 Lambeth cholera death
values to that of the 1854 Southwark and Vauxhall values? This is in
many ways an obvious choice, and in fact, it is one of the more
common naive approaches to causal inference. After all, we have a
control group, don’t we? Why can’t we just compare a treatment
group to a control group? Let’s look and see.

Table 70. Compared to what? Different companies.

Table 71. Compared to what? Before and after.

One of the things we immediately must remember is that the
simple difference in outcomes, which is all we are doing here, only
collapsed to the ATE if the treatment had been randomized. But it is
never randomized in the real world where most choices if not all
choices made by real people is endogenous to potential outcomes.
Let’s represent now the differences between Lambeth and
Southwark and Vauxhall with fixed level differences, or fixed effects,
represented by L and SV. Both are unobserved, unique to each
company, and fixed over time. What these fixed effects mean is that
even if Lambeth hadn’t changed its water source there, would still be



something determining cholera deaths, which is just the time-
invariant unique differences between the two companies as it relates
to cholera deaths in 1854.

Table 72. Compared to what? Difference in each company’s differences.

When we make a simple comparison between Lambeth and
Southwark and Vauxhall, we get an estimated causal effect equalling
D + (L − SV). Notice the second term, L − SV. We’ve seen this
before. It’s the selection bias we found from the decomposition of the
simple difference in outcomes from earlier in the book.

Okay, so say we realize that we cannot simply make cross-
sectional comparisons between two units because of selection bias.
Surely, though, we can compare a unit to itself? This is sometimes
called an interrupted time series. Let’s consider that simple before-
and-after difference for Lambeth now.

While this procedure successfully eliminates the Lambeth fixed
effect (unlike the cross-sectional difference), it doesn’t give me an
unbiased estimate of D because differences can’t eliminate the
natural changes in the cholera deaths over time. Recall, these
events were oscillating in waves. I can’t compare Lambeth before
and after (T+D) because of T, which is an omitted variable.

The intuition of the DD strategy is remarkably simple: combine
these two simpler approaches so the selection bias and the effect of
time are, in turns, eliminated. Let’s look at it in the following table.

The first difference, D1, does the simple before-and-after
difference. This ultimately eliminates the unit-specific fixed effects.



Then, once those differences are made, we difference the
differences (hence the name) to get the unbiased estimate of D.

But there’s a a key assumption with a DD design, and that
assumption is discernible even in this table. We are assuming that
there is no time-variant company specific unobservables. Nothing
unobserved in Lambeth households that is changing between these
two periods that also determines cholera deaths. This is equivalent
to assuming that T is the same for all units. And we call this the
parallel trends assumption. We will discuss this assumption
repeatedly as the chapter proceeds, as it is the most important
assumption in the design’s engine. If you can buy off on the parallel
trends assumption, then DD will identify the causal effect.

DD is a powerful, yet amazingly simple design. Using repeated
observations on a treatment and control unit (usually several units),
we can eliminate the unobserved heterogeneity to provide a credible
estimate of the average treatment effect on the treated (ATT) by
transforming the data in very specific ways. But when and why does
this process yield the correct answer? Turns out, there is more to it
than meets the eye. And it is imperative on the front end that you
understand what’s under the hood so that you can avoid conceptual
errors about this design.

The simple 2×2 DD. The cholera case is a particular kind of DD
design that Goodman-Bacon [2019] calls the 2 ×2 DD design. The
2×2 DD design has a treatment group k and untreated group U.
There is a pre-period for the treatment group, pre(k); a post-period
for the treatment group, post(k); a pre-treatment period for the
untreated group, pre(U); and a post-period for the untreated group,
post(U) So:

where kU is the estimated ATT for group k, and ȳ is the sample
mean for that particular group in a particular time period. The first
paragraph differences the treatment group, k, after minus before, the



second paragraph differences the untreated group, U, after minus
before. And once those quantities are obtained, we difference the
second term from the first.

But this is simply the mechanics of calculations. What exactly is
this estimated parameter mapping onto? To understand that, we
must convert these sample averages into conditional expectations of
potential outcomes. But that is easy to do when working with sample
averages, as we will see here. First let’s rewrite this as a conditional
expectation.

Now let’s use the switching equation, which transforms historical
quantities of Y into potential outcomes. As we’ve done before, we’ll
do a little trick where we add zero to the right-hand side so that we
can use those terms to help illustrate something important.

Now we simply rearrange these terms to get the decomposition of
the 2×2 DD in terms of conditional expected potential outcomes.

Now, let’s study this last term closely. This simple 2×2 difference-
in-differences will isolate the ATT (the first term) if and only if the



second term zeroes out. But why would this second term be zero? It
would equal zero if the first difference involving the treatment group,
k, equaled the second difference involving the untreated group, U.

But notice the term in the second line. Notice anything strange
about it? The object of interest is Y0, which is some outcome in a
world without the treatment. But it’s the post period, and in the post
period, Y = Y1 not Y0 by the switching equation. Thus, the first term
is counterfactual. And as we’ve said over and over, counterfactuals
are not observable. This bottom line is often called the parallel trends
assumption and it is by definition untestable since we cannot
observe this counterfactual conditional expectation. We will return to
this again, but for now I simply present it for your consideration. DD
and the Minimum Wage. Now I’d like to talk about more explicit
economic content, and the minimum wage is as good a topic as any.
The modern use of DD was brought into the social sciences through
esteemed labor economist Orley Ashenfelter [1978]. His study was
no doubt influential to his advisee, David Card, arguably the greatest
labor economist of his generation. Card would go on to use the
method in several pioneering studies, such as Card [1990]. But I will
focus on one in particular—his now-classicminimum wage study
[Card and Krueger, 1994].

Card and Krueger [1994] is an infamous study both because of its
use of an explicit counterfactual for estimation, and because the
study challenges many people’s common beliefs about the negative
effects of the minimum wage. It lionized a massive back-and-forth
minimum-wage literature that continues to this day.4 So controversial
was this study that James Buchanan, the Nobel Prize winner, called
those influenced by Card and Krueger [1994] “camp following
whores” in a letter to the editor of the Wall Street Journal [Buchanan,
1996].5

Suppose you are interested in the effect of minimum wages on
employment. Theoretically, you might expect that in competitive
labor markets, an increase in the minimum wage would move us up
a downward-sloping demand curve, causing employment to fall. But
in labor markets characterized by monopsony, minimum wages can



increase employment. Therefore, there are strong theoretical
reasons to believe that the effect of the minimum wage on
employment is ultimately an empirical question depending on many
local contextual factors. This is where Card and Krueger [1994]
entered. Could they uncover whether minimum wages were
ultimately harmful or helpful in some local economy?

It’s always useful to start these questions with a simple thought
experiment: if you had a billion dollars, complete discretion and could
run a randomized experiment, how would you test whether minimum
wages increased or decreased employment? You might go across
the hundreds of local labor markets in the United States and flip a
coin—heads, you raise the minimum wage; tails, you keep it at the
status quo. As we’ve done before, these kinds of thought
experiments are useful for clarifying both the research design and
the causal question.

Lacking a randomized experiment, Card and Krueger [1994]
decided on a next-best solution by comparing two neighboring states
before and after a minimum-wage increase. It was essentially the
same strategy that Snow used in his cholera study and a strategy
that economists continue to use, in one form or another, to this day
[Dube et al., 2010].

New Jersey was set to experience an increase in the state
minimum wage from $4.25 to $5.05 in November 1992, but
neighboring Pennsylvania’s minimum wage was staying at $4.25.
Realizing they had an opportunity to evaluate the effect of the
minimum-wage increase by comparing the two states before and
after, they fielded a survey of about four hundred fast-food
restaurants in both states—once in February 1992 (before) and
again in November (after). The responses from this survey were then
used to measure the outcomes they cared about (i.e., employment).
As we saw with Snow, we see again here that shoe leather is as
important as any statistical technique in causal inference.

Let’s look at whether the minimum-wage hike in New Jersey in fact
raised the minimum wage by examining the distribution of wages in
the fast food stores they surveyed. Figure 54 shows the distribution
of wages in November 1992 after the minimum-wage hike. As can



be seen, the minimum-wage hike was binding, evidenced by the
mass of wages at the minimum wage in New Jersey.

As a caveat, notice how effective this is at convincing the reader
that the minimum wage in New Jersey was binding. This piece of
data visualization is not a trivial, or even optional, strategy to be
taken in studies such as this. Even John Snow presented carefully
designed maps of the distribution of cholera deaths throughout
London. Beautiful pictures displaying the “first stage” effect of the
intervention on the treatment are crucial in the rhetoric of causal
inference, and few have done it as well as Card and Krueger.



Figure 54. Distribution of wages for NJ and PA in November 1992. Reprinted
from Card, D. and Krueger, A. (1994). “Minimum Wages and Employment: A
Case Study of the Fast-Food Industry in New Jersey and Pennsylvania.”
American Economic Review, 84:772–793. Reprinted with permission from
authors.

Let’s remind ourselves what we’re after—the average causal effect
of the minimum-wage hike on employment, or the ATT. Using our
decomposition of the 2×2 DD from earlier, we can write it out as:



Again, we see the key assumption: the parallel-trends assumption,
which is represented by the first difference in the second line. Insofar
as parallel trends holds in this situation, then the second term goes
to zero, and the 2×2 DD collapses to the ATT.

The 2×2 DD requires differencing employment in NJ and PA, then
differencing those first differences. This set of steps estimates the
true ATT so long as the parallel-trends bias is zero. When that is
true, 2×2 is equal to δATT. If this bottom line is not zero, though, then
simple 2×2 suffers from unknown bias—could bias it upwards, could
bias it downwards, could flip the sign entirely. Table 73 shows the
results of this exercise from Card and Krueger [1994].

Table 73. Simple DD using sample averages on full-time employment.

Note: Standard errors in parentheses.

Here you see the result that surprised many people. Card and
Krueger [1994] estimate an ATT of +2.76 additional mean full-time-
equivalent employment, as opposed to some negative value which
would be consistent with competitive input markets. Herein we get



Buchanan’s frustration with the paper, which is based mainly on a
particular model he had in mind, rather than a criticism of the
research design the authors used.

While differences in sample averages will identify the ATT under
the parallel assumption, we may want to use multivariate regression
instead. For instance, if you need to avoid omitted variable bias
through controlling for endogenous covariates that vary over time,
then you may want to use regression. Such strategies are another
way of saying that you will need to close some known critical
backdoor. Another reason for the equation is that by controlling for
more appropriate covariates, you can reduce residual variance and
improve the precision of your DD estimate.

Using the switching equation, and assuming a constant state fixed
effect and time fixed effect, we can write out a simple regression
model estimating the causal effect of the minimum wage on
employment, Y.



Figure 55. DD regression diagram.

This simple 2×2 is estimated with the following equation:

NJ is a dummy equal to 1 if the observation is from NJ, and D is a
dummy equal to 1 if the observation is from November (the post
period). This equation takes the following values, which I will list in
order according to setting the dummies equal to one and/or zero:

1. PA Pre: α
2. PA Post: α + λ
3. NJ Pre: α + γ



4. NJ Post: α + γ + λ+δ

We can visualize the 2×2 DD parameter in Figure 55.
Now before we hammer the parallel trends assumption for the

billionth time, I wanted to point something out here which is a bit
subtle. But do you see the δ parameter floating in the air above the
November line in the Figure 55? This is the difference between a
counterfactual level of employment (the bottom black circle in
November on the negatively sloped dashed line) and the actual level
of employment (the above black circle in November on the positively
sloped solid line) for New Jersey. It is therefore the ATT, because the
ATT is equal to

wherein the first is observed (because Y = Y1 in the post period) and
the latter is unobserved for the same reason.

Now here’s the kicker: OLS will always estimate that δ line even if
the counterfactual slope had been something else. That’s because
OLS uses Pennsylvania’s change over time to project a point starting
at New Jersey’s pre-treatment value. When OLS has filled in that
missing amount, the parameter estimate is equal to the difference
between the observed post-treatment value and that projected value
based on the slope of Pennsylvania regardless of whether that
Pennsylvania slope was the correct benchmark for measuring New
Jersey’s counterfactual slope. OLS always estimates an effect size
using the slope of the untreated group as the counterfactual,
regardless of whether that slope is in fact the correct one.

But, see what happens when Pennsylvania’s slope is equal to New
Jersey’s counterfactual slope? Then that Pennsylvania slope used in
regression will mechanically estimate the ATT. In other words, only
when the Pennsylvania slope is the counterfactual slope for New
Jersey will OLS coincidentally identify that true effect. Let’s see that
here in Figure 56.

Notice the two δ listed: on the left is the true parameter δATT. On
the right is the one estimated by OLS, OLS. The falling solid line is



the observed Pennsylvania change, whereas the falling solid line
labeled “observed NJ” is the change in observed employment for
New Jersey between the two periods.

The true causal effect, δATT, is the line from the “observed NJ”
point and the “counterfactual NJ” point. But OLS does not estimate
this line. Instead, OLS uses the falling Pennsylvania line to draw a
parallel line from the February NJ point, which is shown in thin gray.
And OLS simply estimates the vertical line from the observed NJ
point to the postNJ point, which as can be seen underestimates the
true causal effect.

Figure 56. DD regression diagram without parallel trends.



Here we see the importance of the parallel trends assumption. The
only situation under which the OLS estimate equals the ATT is when
the counterfactual NJ just coincidentally lined up with the gray OLS
line, which is a line parallel to the slope of the Pennsylvania line.
Herein lies the source of understandable skepticism of many who
have been paying attention: why should we base estimation on this
belief in a coincidence? After all, this is a counterfactual trend, and
therefore it is unobserved, given it never occurred. Maybe the
counterfactual would’ve been the gray line, but maybe it would’ve
been some other unknown line. It could’ve been anything—we just
don’t know.

This is why I like to tell people that the parallel trends assumption
is actually just a restatement of the strict exogeneity assumption we
discussed in the panel chapter. What we are saying when we appeal
to parallel trends is that we have found a control group who
approximates the traveling path of the treatment group and that the
treatment is not endogenous. If it is endogenous, then parallel trends
is always violated because in counterfactual the treatment group
would’ve diverged anyway, regardless of the treatment.

Before we see the number of tests that economists have devised
to provide some reasonable confidence in the belief of the parallel
trends, I’d like to quickly talk about standard errors in a DD design.

Inference
Many studies employing DD strategies use data from many years—
not just one pre-treatment and one post-treatment period like Card
and Krueger [1994]. The variables of interest in many of these
setups only vary at a group level, such as the state, and outcome
variables are often serially correlated. In Card and Krueger [1994], it
is very likely for instance that employment in each state is not only
correlated within the state but also serially correlated. Bertrand et al.
[2004] point out that the conventional standard errors often severely
understate the standard deviation of the estimators, and so standard
errors are biased downward, “too small,” and therefore overreject the



null hypothesis. Bertrand et al. [2004] propose the following
solutions:

1. Block bootstrapping standard errors.
2. Aggregating the data into one pre and one post period.
3. Clustering standard errors at the group level.

Block bootstrapping. If the block is a state, then you simply sample
states with replacement for bootstrapping. Block bootstrap is
straightforward and only requires a little programming involving loops
and storing the estimates. As the mechanics are similar to that of
randomization inference, I leave it to the reader to think about how
they might tackle this.

Aggregation. This approach ignores the time-series dimensions
altogether, and if there is only one pre and post period and one
untreated group, it’s as simple as it sounds. You simply average the
groups into one pre and post period, and conduct difference-in-
differences on those aggregated. But if you have differential timing,
it’s a bit unusual because you will need to partial out state and year
fixed effects before turning the analysis into an analysis involving
residualization. Essentially, for those common situations where you
have multiple treatment time periods (which we discuss later in
greater detail), you would regress the outcome onto panel unit and
time fixed effects and any covariates. You’d then obtain the residuals
for only the treatment group. You then divide the residuals only into a
pre and post period; you are essentially at this point ignoring the
never-treated groups. And then you regress the residuals on the
after dummy. It’s a strange procedure, and does not recover the
original point estimate, so I focus instead on the third.

Clustering. Correct treatment of standard errors sometimes makes
the number of groups very small: in Card and Krueger [1994], the
number of groups is only two. More common than not, researchers
will use the third option (clustering the standard errors by group). I
have only one time seen someone do all three of these; it’s rare



though. Most people will present just the clustering solution—most
likely because it requires minimal programming.

For clustering, there is no programming required, as most software
packages allow for it already. You simply adjust standard errors by
clustering at the group level, as we discussed in the earlier chapter,
or the level of treatment. For state-level panels, that would mean
clustering at the state level, which allows for arbitrary serial
correlation in errors within a state over time. This is the most
common solution employed.

Inference in a panel setting is independently an interesting area.
When the number of clusters is small, then simple solutions like
clustering the standard errors no longer suffice because of a growing
false positive problem. In the extreme case with only one treatment
unit, the over-rejection rate at a significance of 5% can be as high as
80% in simulations even using the wild bootstrap technique which
has been suggested for smaller numbers of clusters [Cameron et al.,
2008; MacKinnon andWebb, 2017]. In such extreme cases where
there is only one treatment group, I have preferred to use
randomization inference following Buchmueller et al. [2011].

Providing Evidence for Parallel Trends Through
Event Studies and Parallel Leads
A redundant rant about parallel pre-treatment DD coefficients
(because I’m worried one was not enough). Given the critical
importance of the parallel trends assumption in identifying causal
effects with the DD design, and given that one of the observations
needed to evaluate the parallel-trends assumption is not available to
the researcher, one might throw up their hands in despair. But
economists are stubborn, and they have spent decades devising
ways to test whether it’s reasonable to believe in parallel trends. We
now discuss the obligatory test for any DD design—the event study.
Let’s rewrite the decomposition of the 2×2 DD again.



We are interested in the first term, ATT, but it is contaminated by
selection bias when the second term does not equal zero. Since
evaluating the second term requires the counterfactual,  Post],
we are unable to do so directly. What economists typically do,
instead, is compare placebo pre-treatment leads of the DD
coefficient. If DD coefficients in the pre-treatment periods are
statistically zero, then the difference-in-differences between
treatment and control groups followed a similar trend prior to
treatment. And here’s the rhetorical art of the design: if they had
been similar before, then why wouldn’t they continue to be post-
treatment?

But notice that this rhetoric is a kind of proof by assertion. Just
because they were similar before does not logically require they be
the same after. Assuming that the future is like the past is a form of
the gambler’s fallacy called the “reverse position.” Just because a
coin came up heads three times in a row does not mean it will come
up heads the fourth time—not without further assumptions. Likewise,
we are not obligated to believe that that counterfactual trends would
be the same post-treatment because they had been similar
pretreatment without further assumptions about the predictive power
of pre-treatment trends. But to make such assumptions is again to
make untestable assumptions, and so we are back where we
started.

One situation where parallel trends would be obviously violated is
if the treatment itself was endogenous. In such a scenario, the
assignment of the treatment status would be directly dependent on
potential outcomes, and absent the treatment, potential outcomes
would’ve changed regardless. Such traditional endogeneity requires
more than merely lazy visualizations of parallel leads. While the test



is important, technically pre-treatment similarities are neither
necessary nor sufficient to guarantee parallel counterfactual trends
[Kahn-Lang and Lang, 2019]. The assumption is not so easily
proven. You can never stop being diligent in attempting to determine
whether groups of units endogenously selected into treatment, the
presence of omitted variable biases, various sources of selection
bias, and open backdoor paths. When the structural error term in a
dynamic regression model is uncorrelated with the treatment
variable, you have strict exogeneity, and that is what gives you
parallel trends, and that is what makes you able to make meaningful
statements about your estimates.

Checking the pre-treatment balance between treatment and control
groups. Now with that pessimism out of the way, let’s discuss event
study plots because though they are not direct tests of the parallel
trends assumption, they have their place because they show that the
two groups of units were comparable on dynamics in the pre-
treatment period.6 Such conditional independence concepts have
been used profitably throughout this book, and we do so again now.

Authors have tried showing the differences between treatment and
control groups a few different ways. One way is to simply show the
raw data, which you can do if you have a set of groups who received
the treatment at the same point in time. Then you would just visually
inspect whether the pre-treatment dynamics of the treatment group
differed from that of the control group units.

But what if you do not have a single treatment date? What if
instead you have differential timing wherein groups of units adopt the
treatment at different points? Then the concept of pre-treatment
becomes complex. If New Jersey raised its minimum wage in 1992
and New York raised its minimum wage in 1994, but Pennsylvania
never raised its minimum wage, the pre-treatment period is defined
for New Jersey (1991) and New York (1993), but not Pennsylvania.
Thus, how do we go about testing for pre-treatment differences in
that case? People have done it in a variety of ways.

One possibility is to plot the raw data, year by year, and simply
eyeball. You would compare the treatment group with the never-



treated, for instance, which might require a lot of graphs and may
also be awkward looking. Cheng and Hoekstra [2013] took this route,
and created a separate graph comparing treatment groups with an
untreated group for each different year of treatment. The advantage
is its transparent display of the raw unadjusted data. No funny
business. The disadvantage of this several-fold. First, it may be
cumbersome when the number of treatment groups is large, making
it practically impossible. Second, it may not be beautiful. But third,
this necessarily assumes that the only control group is the never-
treated group, which in fact is not true given what Goodman-Bacon
[2019] has shown. Any DD is a combination of a comparison
between the treatment and the never treated, an early treated
compared to a late treated, and a late treated compared to an early
treated. Thus only showing the comparison with the never treated is
actually a misleading presentation of the underlying mechanization
of identification using an twoway fixed-effects model with differential
timing.

Anderson et al. [2013] took an alternative, creative approach to
show the comparability of states with legalized medical marijuana
and states without. As I said, the concept of a pre-treatment period
for a control state is undefined when pre-treatment is always in
reference to a specific treatment date which varies across groups.
So, the authors construct a recentered time path of traffic fatality
rates for the control states by assigning random treatment dates to
all control counties and then plotting the average traffic fatality rates
for each group in years leading up to treatment and beyond. This
approach has a few advantages. First, it plots the raw data, rather
than coefficients from a regression (as we will see next). Second, it
plots that data against controls. But its weakness is that technically,
the control series is not in fact true. It is chosen so as to give a
comparison, but when regressions are eventually run, it will not be
based on this series. But the main main shortcoming is that
technically it is not displaying any of the control groups that will be
used for estimation Goodman-Bacon [2019]. It is not displaying a
comparison between the treated and the never treated; it is not a
comparison between the early and late treated; it is not a



comparison between the late and early treated. While a creative
attempt to evaluate the pre-treatment differences in leads, it does not
in fact technically show that.

The current way in which authors evaluate the pre-treatment
dynamics between a treatment and control group with differential
timing is to estimate a regression model that includes treatment
leads and lags. I find that it is always useful to teach these concepts
in the context of an actual paper, so let’s review an interesting
working paper by Miller et al. [2019].

Affordable Care Act, expanding Medicaid and population mortality. A
provocative new study by Miller et al. [2019] examined the expansion
of Medicaid under the Affordable Care Act. They were primarily
interested in the effect that this expansion had on population
mortality. Earlier work had cast doubt on Medicaid’s effect on
mortality [Baicker et al., 2013; Finkelstein et al., 2012], so revisiting
the question with a larger sample size had value.

Like Snow before them, the authors link data sets on deaths with a
large-scale federal survey data, thus showing that shoe leather often
goes hand in hand with good design. They use these data to
evaluate the causal impact of Medicaid enrollment on mortality using
a DD design. Their focus is on the near-elderly adults in states with
and without the Affordable Care Act Medicaid expansions and they
find a 0.13-percentage-point decline in annual mortality, which is a
9.3% reduction over the sample mean, as a result of the ACA
expansion. This effect is a result of a reduction in disease-related
deaths and gets larger over time. Medicaid, in this estimation, saved
a non-trivial number of lives.

As with many contemporary DD designs, Miller et al. [2019]
evaluate the pre-treatment leads instead of plotting the raw data by
treatment and control. Post-estimation, they plotted regression
coefficients with 95% confidence intervals on their treatment leads
and lags. Including leads and lags into the DD model allowed the
reader to check both the degree to which the post-treatment
treatment effects were dynamic, and whether the two groups were



comparable on outcome dynamics pre-treatment. Models like this
one usually follow a form like:

Treatment occurs in year 0. You include q leads or anticipatory
effects and m lags or post-treatment effects.

Miller et al. [2019] produce four event studies that when taken
together tell the main parts of the story of their paper. This is, quite
frankly, the art of the rhetoric of causal inference—visualization of
key estimates, such as “first stages” as well as outcomes and
placebos. The event study plots are so powerfully persuasive, they
will make you a bit jealous, since oftentimes yours won’t be nearly so
nice. Let’s look at the first three. State expansion of Medicaid under
the Affordable Care Act increased Medicaid eligibility (Figure 57),
which is not altogether surprising. It also caused an increase in
Medicaid coverage (Figure 58), and as a consequence reduced the
percentage of the uninsured population (Figure 59). All three of
these are simply showing that the ACA Medicaid expansion had
“bite”—people enrolled and became insured.

There are several features of these event studies that should catch
your eye. First, look at Figure 57. The pre-treatment coefficients are
nearly on the zero line itself. Not only are they nearly zero in their
point estimate, but their standard errors are very small. This means
these are very precisely estimated zero differences between
individuals in the two groups of states prior to the expansion.

The second thing you see, though, is the elephant in the room.
Post-treatment, the probability that someone becomes eligible for
Medicaid immediately shoots up to 0.4 and while not as precise as
the pre-treatment coefficients, the authors can rule out effects as low
as 0.3 to 0.35. These are large increases in eligibility, and the fact
that the coefficients prior to the treatment are basically zero, we find
it easy to believe that the risen coefficients post-treatment were
caused by the ACA’s expansion of Medicaid in states.



Figure 57. Estimates of Medicaid expansion’s effects on eligibility using
leads and lags in an event-study model. Miller, S., Altekruse, S., Johnson, N.,
and Wherry, L. R. (2019). Medicaid and mortality: New evidence from linked
survey and administrative data. Working Paper No. 6081, National Bureau of
Economic Research, Cambridge, MA. Reprinted with permission from authors.

Of course, I would not be me if I did not say that technically the
zeroes pre-treatment do not therefore mean that the post-treatment
difference between counterfactual trends and observed trends are
zero, but doesn’t it seem compelling when you see it? Doesn’t it
compel you, just a little bit, that the changes in enrollment and
insurance status were probably caused by the Medicaid expansion?
I daresay a table of coefficients with leads, lags, and standard errors
would probably not be as compelling even though it is the identical
information. Also, it is only fair that the skeptic refuse these patterns
with new evidence of what it is other than the Medicaid expansion. It
is not enough to merely hand wave a criticism of omitted variable
bias; the critic must be as engaged in this phenomenon as the
authors themselves, which is how empiricists earn the right to
critique someone else’s work.



Similar graphs are shown for coverage—prior to treatment, the two
groups of individuals in treatment and control were similar with
regards to their coverage and uninsured rate. But post-treatment,
they diverge dramatically. Taken together, we have the “first stage,”
which means we can see that the Medicaid expansion under the
ACA had “bite.” Had the authors failed to find changes in eligibility,
coverage, or uninsured rates, then any evidence from the secondary
outcomes would have doubt built in. This is the reason it is so
important that you examine the first stage (treatment’s effect on
usage), as well as the second stage (treatment’s effect on the
outcomes of interest).

Figure 58. Estimates of Medicaid expansion’s effects on coverage using
leads and lags in an event-study model. Miller, S., Altekruse, S., Johnson, N.,
and Wherry, L. R. (2019). Medicaid and mortality: New evidence from linked
survey and administrative data. Working Paper No. 6081, National Bureau of
Economic Research, Cambridge, MA. Reprinted with permission from authors.

But now let’s look at the main result—what effect did this have on
population mortality itself? Recall, Miller et al. [2019] linked



administrative death records with a large-scale federal survey. So
they actually know who is on Medicaid and who is not. John Snow
would be proud of this design, the meticulous collection of high-
quality data, and all the shoeleather the authors showed.

This event study is presented in Figure 60. A graph like this is the
contemporary heart and soul of a DD design, both because it
conveys key information regarding the comparability of the treatment
and control groups in their dynamics just prior to treatment, and
because such strong data visualization of main effects are powerfully
persuasive. It’s quite clear looking at it that there was no difference
between the trending tendencies of the two sets of state prior to
treatment, making the subsequent divergence all the more striking.

Figure 59. Estimates of Medicaid expansion’s effects on the uninsured state
using leads and lags in an event-study model. Miller, S., Altekruse, S.,
Johnson, N., and Wherry, L. R. (2019). Medicaid and mortality: New evidence
from linked survey and administrative data. Working Paper No. 6081, National
Bureau of Economic Research, Cambridge, MA. Reprinted with permission
from authors.



But a picture like this is only as important as the thing that it is
studying, and it is worth summarizing what Miller et al. [2019] have
revealed here. The expansion of ACA Medicaid led to large swaths
of people becoming eligible for Medicaid. In turn, they enrolled in
Medicaid, which caused the uninsured rate to drop considerably. The
authors then find amazingly using linked administrative data on
death records that the expansion of ACA Medicaid led to a 0.13
percentage point decline in annual mortality, which is a 9.3 percent
reduction over the mean. They go on to try and understand the
mechanism (another key feature of this high-quality study) by which
such amazing effects may have occurred, and conclude that
Medicaid caused near-elderly individuals to receive treatment for life-
threatening illnesses. I suspect we will be hearing about this study
for many years.



Figure 60. Estimates of Medicaid expansion’s effects on on annual mortality
using leads and lags in an event study model. Miller, S., Altekruse, S.,
Johnson, N., and Wherry, L. R. (2019). Medicaid and mortality: New evidence
from linked survey and administrative data. Working Paper No. 6081, National
Bureau of Economic Research, Cambridge, MA. Reprinted with permission
from authors.

The Importance of Placebos in DD
There are several tests of the validity of a DD strategy. I have
already discussed one—comparability between treatment and
control groups on observable pre-treatment dynamics. Next, I will
discuss other credible ways to evaluate whether estimated causal
effects are credible by emphasizing the use of placebo falsification.

The idea of placebo falsification is simple. Say that you are finding
some negative effect of the minimum wage on low-wage
employment. Is the hypothesis true if we find evidence in favor?
Maybe, maybe not. Maybe what would really help, though, is if you
had in mind an alternative hypothesis and then tried to test that
alternative hypothesis. If you cannot reject the null on the alternative



hypothesis, then it provides some credibility to your original analysis.
For instance, maybe you are picking up something spurious, like
cyclical factors or other unobservables not easily captured by a time
or state fixed effects. So what can you do?

One candidate placebo falsification might simply be to use data for
an alternative type of worker whose wages would not be affected by
the binding minimum wage. For instance, minimum wages affect
employment and earnings of low-wage workers as these are the
workers who literally are hired based on the market wage. Without
some serious general equilibrium gymnastics, the minimum wage
should not affect the employment of higher wage workers, because
the minimum wage is not binding on high wage workers. Since high-
and low-wage workers are employed in very different sectors, they
are unlikely to be substitutes. This reasoning might lead us to
consider the possibility that higher wage workers might function as a
placebo.

There are two ways you can go about incorporating this idea into
our analysis. Many people like to be straightforward and simply fit
the same DD design using high wage employment as the outcome. If
the coefficient on minimum wages is zero when using high wage
worker employment as the outcome, but the coefficient on minimum
wages for low wage workers is negative, then we have provided
stronger evidence that complements the earlier analysis we did
when on the low wage workers. But there is another method that
uses the within-state placebo for identification called the difference-
in-differences-in-differences (“triple differences”). I will discuss that
design now.

Triple differences. In our earlier analysis, we assumed that the only
thing that happened to New Jersey after it passed the minimum
wage was a common shock, T, but what if there were state-specific
time shocks such as NJt or PAt? Then even DD cannot recover the
treatment effect. Let’s see for ourselves using a modification of the
simple minimum-wage table from earlier, which will include the



within-state workers who hypothetically were untreated by the
minimum wage—the “high-wage workers.”

Before the minimum-wage increase, low- and high-wage
employment in New Jersey is determined by a group-specific New
Jersey fixed effect (e.g., NJh). The same is true for Pennsylvania.
But after the minimum-wage hike, four things change in New Jersey:
national trends cause employment to change by T; New Jersey-
specific time shocks change employment by NJt; generic trends in
low-wage workers change employment by lt; and the minimum-wage
has some unknown effect D. We have the same setup in
Pennsylvania except there is no minimum wage, and Pennsylvania
experiences its own time shocks.

Table 74. Triple differences design.

Now if we take first differences for each set of states, we only
eliminate the state fixed effect. The first difference estimate for New
Jersey includes the minimum-wage effect, D, but is also hopelessly
contaminated by confounders (i.e., T +NJt +lt). So we take a second
difference for each state, and doing so, we eliminate two of the
confounders: T disappears and NJt disappears. But while this DD
strategy has eliminated several confounders, it has also introduced
new ones (i.e., (lt − ht)). This is the final source of selection bias that
triple differences are designed to resolve. But, by differencing



Pennsylvania’s second difference from New Jersey, the (lt − ht) is
deleted and the minimum-wage effect is isolated.

Now, this solution is not without its own set of unique parallel-
trends assumptions. But one of the parallel trends here I’d like you to
see is the lt − ht term. This parallel trends assumption states that the
effect can be isolated if the gap between high- and low-wage
employment would’ve evolved similarly in the treatment state
counterfactual as it did in the historical control states. And we should
probably provide some credible evidence that this is true with leads
and lags in an event study as before.

State-mandated maternity benefits. The triple differences design was
first introduced by Gruber [1994] in a study of state-level policies
providing maternity benefits. I present his main results in Table 75.
Notice that he uses as his treatment group married women of
childbearing age in treatment and control states, but he also uses a
set of placebo units (older women and single men 20–40) as within-
state controls. He then goes through the differences in means to get
the difference-in-differences for each set of groups, after which he
calculates the DDD as the difference between these two difference-
in-differences.



Table 75. DDD Estimates of the Impact of State Mandates on Hourly Wages.

Note: Standard errors in parentheses.

Ideally when you do a DDD estimate, the causal effect estimate
will come from changes in the treatment units, not changes in the
control units. That’s precisely what we see in Gruber [1994]: the
action comes from changes in the married women age 20–40
(−0.062); there’s little movement among the placebo units (−0.008).
Thus when we calculate the DDD, we know that most of that
calculation is coming from the first DD, and not so much from the
second. We emphasize this because DDD is really just another
falsification exercise, and just as we would expect no effect had we
done the DD on this placebo group, we hope that our DDD estimate
is also based on negligible effects among the control group.



What we have done up to now is show how to use sample analogs
and simple differences in means to estimate the treatment effect
using DDD. But we can also use regression to control for additional
covariates that perhaps are necessary to close backdoor paths and
so forth. What does that regression equation look like? Both the
regression itself, and the data structure upon which the regression is
based, are complicated because of the stacking of different groups
and the sheer number of interactions involved. Estimating a DDD
model requires estimating the following regression:

where the parameter of interest is β7. First, notice the additional
subscript, j. This j indexes whether it’s the main category of interest
(e.g., low-wage employment) or the within-state comparison group
(e.g., high-wage employment). This requires a stacking of the data
into a panel structure by group, as well as state. Second, the DDD
model requires that you include all possible interactions across the
group dummy δj, the post-treatment dummy τt and the treatment
state dummy Di. The regression must include each dummy
independently, each individual interaction, and the triple differences
interaction. One of these will be dropped due to multicollinearity, but I
include them in the equation so that you can visualize all the factors
used in the product of these terms.

Abortion legalization and long-term gonorrhea incidence. Now that
we know a little about the DD design, it would probably be beneficial
to replicate a paper. And since the DDD requires reshaping panel
data multiple times, that makes working through a detailed
replication even more important. The study we will be replicating is
Cunningham and Cornwell [2013], one of my first publications and
the third chapter of my dissertation. Buckle up, as this will be a bit of
a roller-coaster ride.



Gruber et al. [1999] was the beginning of what would become a
controversial literature in reproductive health. They wanted to know
the characteristics of the marginal child aborted had that child
reached their teen years. The authors found that the marginal
counterfactual child aborted was 60% more likely to grow up in a
single-parent household, 50% more likely to live in poverty, and 45%
more likely to be a welfare recipient. Clearly there were strong
selection effects related to early abortion whereby it selected on
families with fewer resources.

Their finding about the marginal child led John Donohue and
Steven Levitt to wonder if there might be far-reaching effects of
abortion legalization given the strong selection associated with its
usage in the early 1970s. In Donohue and Levitt [2001], the authors
argued that they had found evidence that abortion legalization had
also led to massive declines in crime rates. Their interpretation of the
results was that abortion legalization had reduced crime by removing
high-risk individuals from a birth cohort, and as that cohort aged,
those counterfactual crimes disappeared. Levitt [2004] attributed as
much as 10% of the decline in crime between 1991 and 2001 to
abortion legalization in the 1970s.

This study was, not surprisingly, incredibly controversial—some of
it warranted but some unwarranted. For instance, some attacked the
paper on ethical grounds and argued the paper was revitalizing the
pseudoscience of eugenics. But Levitt was careful to focus only on
the scientific issues and causal effects and did not offer policy advice
based on his own private views, whatever those may be.

But some of the criticism the authors received was legitimate
precisely because it centered on the research design and execution
itself. Joyce [2004], Joyce [2009], and Foote and Goetz [2008]
disputed the abortion-crime findings—some through replication
exercises using different data, some with different research designs,
and some through the discovery of key coding errors and erroneous
variable construction.

One study in particular challenged the whole enterprise of
estimating longrun improvements due to abortion legalization. For
instance, Ted Joyce, an expert on reproductive health, cast doubt on



the abortion-crime hypothesis using a DDD design [Joyce, 2009]. In
addition to challenging Donohue and Levitt [2001], Joyce also threw
down a gauntlet. He argued that if abortion legalization had such
extreme negative selection as claimed by by Gruber et al. [1999] and
Donohue and Levitt [2001], then it shouldn’t show up just in crime. It
should show up everywhere. Joyce writes:

If abortion lowers homicide rates by 20–30%, then it is likely to have affected
an entire spectrum of outcomes associated with well-being: infant health,
child development, schooling, earnings and marital status. Similarly, the
policy implications are broader than abortion. Other interventions that affect
fertility control and that lead to fewer unwanted births—contraception or
sexual abstinence—have huge potential payoffs. In short, a causal
relationship between legalized abortion and crime has such significant
ramifications for social policy and at the same time is so controversial, that
further assessment of the identifying assumptions and their robustness to
alternative strategies is warranted. [112]

Cunningham and Cornwell [2013] took up Joyce’s challenge. Our
study estimated the effects of abortion legalization on long-term
gonorrhea incidence. Why gonorrhea? For one, single-parent
households are a risk factor that lead to earlier sexual activity and
unprotected sex, and Levine et al. [1999] found that abortion
legalization caused teen childbearing to fall by 12%. Other risky
outcomes had been found by numerous authors. Charles and
Stephens [2006] reported that children exposed in utero to a
legalized abortion regime were less likely to use illegal substances,
which is correlated with risky sexual behavior.

My research design differed from Donohue and Levitt [2001] in
that they used state-level lagged values of an abortion ratio, whereas
I used difference-in-differences. My design exploited the early repeal
of abortion in five states in 1970 and compared those states to the
states that were legalized under Roe v. Wade in 1973. To do this, I
needed cohort-specific data on gonorrhea incidence by state and
year, but as those data are not collected by the CDC, I had to settle
for second best. That second best was the CDC’s gonorrhea data
broken into five-year age categories (e.g., age 15–19, age 20–24).



But this might still be useful because even with aggregate data, it
might be possible to test the model I had in mind.

To understand this next part, which I consider the best part of my
study, you must first accept a basic view of science that good
theories make very specific falsifiable hypotheses. The more specific
the hypothesis, the more convincing the theory, because if we find
evidence exactly where the theory predicts, a Bayesian is likely to
update her beliefs towards accepting the theory’s credibility. Let me
illustrate what I mean with a brief detour involving Albert Einstein’s
theory of relativity.

Einstein’s theory made several falsifiable hypotheses. One of them
involved a precise prediction of the warping of light as it moved past
a large object, such as a star. The problem was that testing this
theory involved observing distance between stars at night and
comparing it to measurements made during the day as the starlight
moved past the sun. Problem was, the sun is too bright in the
daytime to see the stars, so those critical measurements can’t be
made. But Andrew Crommelin and Arthur Eddington realized the
measurements could be made using an ingenious natural
experiment. That natural experiment was an eclipse. They shipped
telescopes to different parts of the world under the eclipse’s path so
that they had multiple chances to make the measurements. They
decided to measure the distances of a large cluster of stars passing
by the sun when it was dark and then immediately during an eclipse
(Figure 61). That test was over a decade after Einstein’s work was
first published [Coles, 2019]. Think about it for a second—Einstein’s
theory by deduction is making predictions about phenomena that no
one had ever really observed before. If this phenomena turned out to
exist, then how couldn’t the Bayesian update her beliefs and accept
that the theory was credible? Incredibly, Einstein was right—just as
he predicted, the apparent position of these stars shifted when
moving around the sun. Incredible!

So what does that have to do with my study of abortion legalization
and gonorrhea? The theory of abortion legalization having strong
selection effects on cohorts makes very specific predictions about
the shape of observed treatment effects. And if we found evidence



for that shape, we’d be forced to take the theory seriously. So what
what were these unusual yet testable predictions exactly?

The testable prediction from the staggered adoption of abortion
legalization concerned the age-year-state profile of gonorrhea. The
early repeal of abortion by five states three years before the rest of
the country predicts lower incidence among 15- to 19-year-olds in
the repeal states only during the 1986–1992 period relative to their
Roe counterparts as the treated cohorts aged. That’s not really all
that special a prediction though. Maybe something happens in those
same states fifteen to nineteen years later that isn’t controlled for, for
instance. What else?

Figure 61. Light bending around the sun, predicted by Einstein, and
confirmed in a natural experiment involving an eclipse. Artwork by Seth Hahne
©2020.

The abortion legalization theory also predicted the shape of the
observed treatment effects in this particular staggered adoption.
Specifically, we should observe nonlinear treatment effects. These
treatment effects should be increasingly negative from 1986 to 1989,
plateau from 1989 to 1991, then gradually dissipate until 1992. In



other words, the abortion legalization hypothesis predicts a parabolic
treatment effect as treated cohorts move through the age
distribution. All coefficients on the DD coefficients beyond 1992
should be zero and/or statistically insignificant.

I illustrate these predictions in Figure 62. The top horizontal axis
shows the year of the panel, the vertical axis shows the age in
calendar years, and the cells show the cohort for a given person of a
certain age in that given year. For instance, consider a 15-year-old in
1985. She was born in 1970. A 15-year-old in 1986 was born in
1971. A 15-year-old in 1987 was born in 1972, and so forth. I mark
the cohorts who were treated by either repeal or Roe in different
shades of gray.



Figure 62. Theoretical predictions of abortion legalization on age profiles of
gonorrhea incidence. Reprinted from Cunningham, S. and Cornwell, C. (2013).
“The Long-Run Effect of Abortion on Sexually Transmitted Infections.”
American Law and Economics Review, 15(1):381–407. Permission from
Oxford University Press.

The theoretical predictions of the staggered rollout is shown at the
bottom of Figure 62. In 1986, only one cohort (the 1971 cohort) was
treated and only in the repeal states. Therefore, we should see small
declines in gonorrhea incidence among 15-year-olds in 1986 relative
to Roe states. In 1987, two cohorts in our data are treated in the
repeal states relative to Roe, so we should see larger effects in
absolute value than we saw in 1986. But from 1988 to 1991, we
should at most see only three net treated cohorts in the repeal states
because starting in 1988, the Roe state cohorts enter and begin
erasing those differences. Starting in 1992, the effects should get



smaller in absolute value until 1992, beyond which there should be
no difference between repeal and Roe states.

Figure 63. Differences in gonorrhea incidence among black females
between repeal and Roe cohorts expressed as coefficient plots. Reprinted
from Cunningham, S. and Cornwell, C. (2013). “The Long-Run Effect of
Abortion on Sexually Transmitted Infections.” American Law and Economics
Review, 15(1):381–407. Permission from Oxford University Press.

It is interesting that something so simple as a staggered policy
rollout should provide two testable hypotheses that together can
provide some insight into whether there is credibility to the negative
selection in abortion legalization story. If we cannot find evidence for
a negative parabola during this specific, narrow window, then the
abortion legalization hypothesis has one more nail in its coffin.

A simple graphic for gonorrhea incidence among black 15- to 19-
year-olds can help illustrate our findings. Remember, a picture is
worth a thousand words, and whether it’s RDD or DD, it’s helpful to
show pictures like these to prepare the reader for the table after
table of regression coefficients. So notice what the raw data looks
like in Figure 63.



First let’s look at the raw data. I have shaded the years
corresponding to the window where we expect to find effects. In
Figure 63, we see the dynamics that will ultimately be picked up in
the regression coefficients—the Roe states experienced a large and
sustained gonorrhea epidemic that only waned once the treated
cohorts emerged and overtook the entire data series.

Now let’s look at regression coefficients. Our estimating equation
is as follows:

where Y is the log number of new gonorrhea cases for 15- to 19-
year-olds (per 100,000 of the population); Repeals equals 1 if the
state legalized abortion prior to Roe; DTt is a year dummy; DSs is a
state dummy; t is a time trend; X is a matrix of covariates. In the
paper, I sometimes included state-specific linear trends, but for this
analysis, I present the simpler model. Finally, εst is a structural error
term assumed to be conditionally independent of the regressors. All
standard errors, furthermore, were clustered at the state level
allowing for arbitrary serial correlation.

I present the plotted coefficients from this regression for simplicity
(and because pictures can be so powerful) in Figure 64. As can be
seen in Figure 64, there is a negative effect during the window where
Roe has not fully caught up, and that negative effect forms a
parabola—just as our theory predicted.

Now, a lot of people might be done, but if you are reading this
book, you have revealed that you are not like a lot of people.
Credibly identified causal effects requires both finding effects, and
ruling out alternative explanations. This is necessary because the
fundamental problem of causal inference keeps us blind to the truth.
But one way to alleviate some of that doubt is through rigorous
placebo analysis. Here I present evidence from a triple difference in
which an untreated cohort is used as a within-state control.

We chose the 25- to 29-year-olds in the same states as within-
state comparison groups instead of 20- to 24-year-olds after a lot of



thought. Our reasoning was that we needed an age group that was
close enough to capture common trends but far enough so as not to
violate SUTVA. Since 15- to 19-year-olds were more likely than 25-to
29-year-olds to have sex with 20- to 24-year-olds, we chose the
slightly older group as the within-stage control. But there’s a trade-off
here. Choose a group too close and you get SUTVA violations.
Choose a group too far and they no longer can credibly soak up the
heterogeneities you’re worried about. The estimating equation for
this regression is:

Figure 64. Coefficients and standard errors from DD regression equation.

where the DDD parameter we are estimating is δ4t—the full
interaction. In case this wasn’t obvious, there are 7 separate
dummies because our DDD parameter has all three interactions.



Thus since there are eight combinations, we had to drop one as the
omitted group, and control separately for the other seven. Here we
present the table of coefficients. Note that the effect should be
concentrated only among the treatment years as before, and
second, it should form a parabola. The results are presented in
Figure 65.

Figure 65. DDD coefficients of abortion legalization on 15- to 19-year-old
Black female log gonorrhea rates.

Here we see the prediction start to break down. Though there are
negative effects for years 1986 to 1990, the 1991 and 1992
coefficients are positive, which is not consistent with our hypothesis.
Furthermore, only the first four coefficients are statistically
significant. Nevertheless, given the demanding nature of DDD,
perhaps this is a small victory in favor of Gruber et al. [1999] and
Donohue and Levitt [2001]. Perhaps the theory that abortion
legalization had strong selection effects on cohorts has some
validity.



Putting aside whether you believe the results, it is still valuable to
replicate the results based on this staggered design. Recall that I
said the DDD design requires stacking the data, which may seem
like a bit of a black box, so I’d like to examine these data now.7



The second line estimates the regression equation. The dynamic
DD coefficients are captured by the repeal-year interactions. These
are the coefficients we used to create box plots in Figure 64. You can
check these yourself.

Note, for simplicity, I only estimated this for the black females
(bf15==1) but you could estimate for the black males (bm15==1),
white females (wf15==1), or white males (wm15==1). We do all four
in the paper, but here we only focus on the black females aged 15–
19 because the purpose of this section is to help you understand the
estimation. I encourage you to play around with this model to see



how robust the effects are in your mind using only this linear
estimation.

But now I want to show you the code for estimating a triple
difference model. Some reshaping had to be done behind the
scenes for this data structure, but it would take too long to post that
here. For now, I will simply produce the commands that produce the
black female result, and I encourage you to explore the panel data
structure so as to familiarize yourself with the way in which the data
are organized.

Notice that some of these were already interactions (e.g., yr),
which was my way to compactly include all of the interactions. I did
this primarily to give myself more control over what variables I was
using. But I encourage you to study the data structure itself so that
when you need to estimate your own DDD, you’ll have a good
handle on what form the data must be in in order to execute so many
interactions.







Going beyond Cunningham and Cornwell [2013]. The US experience
with abortion legalization predicted a parabola from 1986 to 1992 for
15- to 19-year-olds, and using a DD design, that’s what I found. I
also estimated the effect using a DDD design, and while the effects
weren’t as pretty as what I found with DD, there appeared to be
something going on in the general vicinity of where the model
predicted. So boom goes the dynamite, right? Can’t we be done
finally? Not quite.

Whereas my original study stopped there, I would like to go a little
farther. The reason can be seen in the following Figure 66. This is a
modified version of Figure 62, with the main difference being I have
created a new parabola for the 20- to 24-year-olds.

Look carefully at Figure 66. Insofar as the early 1970s cohorts
were treated in utero with abortion legalization, then we should see
not just a parabola for the 15- to 19-year-olds for 1986 to 1992 but
also for the 20- to 24-year-olds for years 1991 to 1997 as the cohorts
continued to age.8

I did not examine the 20- to 24-year-old cohort when I first wrote
this paper because at that time I doubted that the selection effects
for risky sex would persist into adulthood given that youth display
considerable risk-taking behavior. But with time come new
perspectives, and these days I don’t have strong priors that the
selection effects would necessarily vanish after teenage years. So I’d
like to conduct that additional analysis here and now for the first
time. Let’s estimate the same DD model as before, only for Black
females aged 20–24.



As before, we will focus just on the coefficient plots. We show that in
Figure 67. There are a couple of things about this regression output
that are troubling. First, there is a negative parabola showing up
where there wasn’t necessarily one predicted—the 1986–1992
period. Note that is the period where only the 15- to 19-year-olds
were the treated cohorts, suggesting that our 15- to 19-year-old
analysis was picking up something other than abortion legalization.
But that was also the justification for using DDD, as clearly
something else is going on in the repeal versus Roe states during



those years that we cannot adequately control for with our controls
and fixed effects.

Figure 66. Theoretical predictions of abortion legalization on age profiles of
gonorrhea incidence for 20–24-year-olds.

The second thing to notice is that there is no parabola in the
treatment window for the treatment cohort. The effect sizes are
negative in the beginning, but shrink in absolute value when they
should be growing. In fact, the 1991 to 1997 period is one of
convergence to zero, not divergence between these two sets of
states.

But as before, maybe there are strong trending unobservables for
all groups masking the abortion legalization effect. To check, let’s
use my DDD strategy with the 25- to 29-year-olds as the within-state
control group. We can implement this by using the Stata code,
abortion_ddd2.do and abortion_ddd2.R.



Figure 67. Coefficients and standard errors from DD regression equation for
the 20- to 24-year-olds.



Figure 68 shows the DDD estimated coefficients for the treated
cohort relative to a slightly older 25- to 29-year-old cohort. It’s
possible that the 25- to 29-year-old cohort is too close in age to
function as a satisfactory within-state control; if those age 20–24
have sex with those who are age 25–29, for instance, then SUTVA is
violated. There are other age groups, though, that you can try in
place of the 25- to 29-year-olds, and I encourage you to do it for both
the experience and the insights you might gleam.



Figure 68. Coefficients and standard errors from DDD regression equation
for the 20-to 24-year-olds vs. 25- to 29-year-olds.

But let’s back up and remember the big picture. The abortion
legalization hypothesis made a series of predictions about where
negative parabolic treatment effects should appear in the data. And
while we found some initial support, when we exploited more of
those predictions, the results fell apart. A fair interpretation of this
exercise is that our analysis does not support the abortion
legalization hypothesis. Figure 68 shows several point estimates at
nearly zero, and standard errors so large as to include both positive
and negative values for these interactions.

I included this analysis because I wanted to show you the power of
a theory with numerous unusual yet testable predictions. Imagine for
a moment if a parabola had showed up for all age groups in
precisely the years predicted by the theory. Wouldn’twe have to
update our priors about the abortion legalization selection
hypothesis? With predictions so narrow, what else could be causing
it? It’s precisely because the predictions are so specific, though, that
we are able to reject the abortion legalization hypothesis, at least for



gonorrhea. Placebos as critique. Since the fundamental problem of
causal inference blocks our direct observation of causal effects, we
rely on many direct and indirect pieces of evidence to establish
credible causality. And as I said in the previous section on DDD, one
of those indirect pieces of evidence is placebo analysis. The
reasoning goes that if we find, using our preferred research design,
effects where there shouldn’t be, then maybe our original findings
weren’t credible in the first place. Using placebo analysis within your
own work has become an essential part of empirical work for this
reason.

But another use of placebo analysis is to evaluate the credibility of
popular estimation strategies themselves. This kind of use helps
improve a literature by uncovering flaws in a research design which
can then help stimulate the creation of stronger methods and
models. Let’s take two exemplary studies that accomplished this
well: Auld and Grootendorst [2004] and Cohen-Cole and Fletcher
[2008].

To say that the Becker and Murphy [1988] “rational addiction”
model has been influential would be an understatement. It has over
4,000 cites and has become one of the most common frameworks in
health economics. It created a cottage industry of empirical studies
that persists to this day. Alcohol, tobacco, gambling, even sports,
have all been found to be “rationally addictive” commodities and
activities using various empirical approaches.

But some researchers cautioned the research community about
these empirical studies. Rogeberg [2004] critiqued the theory on its
own grounds, but I’d like to focus on the empirical studies based on
the theory. Rather than talk about any specific paper, I’d like to
provide a quote from Melberg [2008], who surveyed researchers who
had written on rational addiction:

A majority of [our] respondents believe the literature is a success story that
demonstrates the power of economic reasoning. At the same time, they also
believe the empirical evidence is weak, and they disagree both on the type
of evidence that would validate the theory and the policy implications. Taken
together, this points to an interesting gap. On the one hand, most of the
respondents claim that the theory has valuable real world implications. On



the other hand, they do not believe the theory has received empirical
support. [1]

Rational addiction should be held to the same empirical standards
as in theory. The strength of the model has always been based on
the economic reasoning, which economists obviously find
compelling. But were the empirical designs flawed? How could we
know?

Auld and Grootendorst [2004] is not a test of the rational addiction
model. On the contrary, it is an “anti-test” of the empirical rational
addiction models common at the time. Their goal was not to evaluate
the theoretical rational addiction model, in other words, but rather the
empirical rational addiction models themselves. How do they do
this? Auld and Grootendorst [2004] used the empirical rational
addiction model to evaluate commodities that could not plausibly be
considered addictive, such as eggs, milk, orange, and apples. They
found that the empirical rational addiction model implied milk was
extremely addictive, perhaps one of the most addictive commodities
studied.9 Is it credible to believe that eggs and milk are “rationally
addictive” or is it more likely the research designs used to evaluate
the rational addiction model were flawed? Auld and Grootendorst
[2004] study cast doubt on the empirical rational addiction model, not
the theory.

Another problematic literature was the peer-effects literature.
Estimating peer effects is notoriously hard. Manski [1993] said that
the deep endogeneity of social interactions made the identification of
peer effects difficult and possibly even impossible. He called this
problem the “mirroring” problem. If “birds of a feather flock together,”
then identifying peer effects in observational settings may just be
impossible due to the profound endogeneities at play.

Several studies found significant network effects on outcomes like
obesity, smoking, alcohol use, and happiness. This led many
researchers to conclude that these kinds of risk behaviors were
“contagious” through peer effects [Christakis and Fowler, 2007]. But
these studies did not exploit randomized social groups. The peer
groups were purely endogenous. Cohen-Cole and Fletcher [2008]



showed using similar models and data that even attributes that
couldn’t be transmitted between peers—acne, height, and
headaches—appeared “contagious” in observational data using the
Christakis and Fowler [2007] model for estimation. Note, Cohen-Cole
and Fletcher [2008] does not reject the idea of theoretical
contagions. Rather, they point out that the Manski critique should
guide peer effect analysis if social interactions are endogenous.
They provide evidence for this indirectly using placebo analysis.10

Compositional change within repeated cross-sections. DD can be
applied to repeated cross-sections, as well as panel data. But one of
the risks of working with the repeated cross-sections is that unlike
panel data (e.g., individual-level panel data), repeated cross-sections
run the risk of compositional changes. Hong [2013] used repeated
cross-sectional data from the Consumer Expenditure Survey (CEX)
containing music expenditure and internet use for a random sample
of households. The author’s study exploited the emergence and
immense popularity of Napster, the first file-sharing software widely
used by Internet users, in June 1999 as a natural experiment. The
study compared Internet users and Internet non-users before and
after the emergence of Napster. At first glance, they found that as
Internet diffusion increased from 1996 to 2001, spending on music
for Internet users fell faster than that for non-Internet users. This was
initially evidence that Napster was responsible for the decline, until
this was investigated more carefully.

But when we look at Table 76, we see evidence of compositional
changes. While music expenditure fell over the treatment period, the
demographics of the two groups also changed over this period. For
instance, the age of Internet users grew while income fell. If older
people are less likely to buy music in the first place, then this could
independently explain some of the decline. This kind of
compositional change is a like an omitted variable bias built into the
sample itself caused by time-variant unobservables. Diffusion of the
Internet appears to be related to changing samples as younger
music fans are early adopters. Identification of causal effects would



need for the treatment itself to be exogenous to such changes in the
composition.

Final thoughts. There are a few other caveats I’d like to make before
moving on. First, it is important to remember the concepts we
learned in the early DAG chapter. In choosing covariates in a DD
design, you must resist the temptation to simply load the regression
up with a kitchen sink of regressors. You should resist if only
because in so doing, you may inadvertently include a collider, and if
a collider is conditioned on, it introduces strange patterns that may
mislead you and your audience. There is unfortunately no way
forward except, again, deep institutional familiarity with both the
factors that determined treatment assignment on the ground, as well
as economic theory itself. Second, another issue I skipped over
entirely is the question of how the outcome is modeled. Very little
thought if any is given to how exactly we should model some
outcome. Just to take one example, should we use the log or the
levels themselves? Should we use the quartic root? Should we use
rates? These, it turns, out are critically important because for many
of them, the parallel trends assumption needed for identification will
not be achieved—even though it will be achieved under some other
unknown transformation. It is for this reason that you can think of
many DD designs as having a parametric element because you must
make strong commitments about the functional form itself. I cannot
provide guidance to you on this, except that maybe using the pre-
treatment leads as a way of finding parallelism could be a useful
guide.

Twoway Fixed Effects with Differential Timing
I have a bumper sticker on my car that says “I love Federalism (for
the natural experiments)” (Figure 69). I made these bumper stickers
for my students to be funny, and to illustrate that the United States is
a never-ending laboratory. Because of state federalism, each US
state has been given considerable discretion to govern itself with
policies and reforms. Yet, because it is a union of states, US



researchers have access to many data sets that have been
harmonized across states, making it even more useful for causal
inference.

Table 76. Changes between Internet and non-Internet users over time.

Note: Sample means from the Consumer Expenditure Survey.

Figure 69. A bumper sticker for nerds.

Goodman-Bacon [2019] calls the staggered assignment of
treatments across geographic units over time the “differential timing”
of treatment. What he means is unlike the simple 2 × 2 that we
discussed earlier (e.g., New Jersey and Pennsylvania), where
treatment units were all treated at the same time, the more common
situation is one where geographic units receive treatments at
different points in time. And this happens in the United States
because each area (state, municipality) will adopt a policy when it
wants to, for its own reasons. As a result, the adoption of some
treatment will tend to be differentially timed across units.

This introduction of differential timing means there are basically
two types of DD designs. There is the 2×2 DD we’ve been



discussing wherein a single unit or a group of units all receive some
treatment at the same point in time, like Snow’s cholera study or
Card and Krueger [1994]. And then there is the DD with differential
timing in which groups receive treatment at different points in time,
like Cheng and Hoekstra [2013]. We have a very good
understanding of the 2×2 design, how it works, why it works, when it
works, and when it does not work. But we did not until Goodman-
Bacon [2019] have as good an understanding of the DD design with
differential timing. So let’s get down to business and discuss that
now by reminding ourselves of the 2×2 DD that we introduced
earlier.

where k is the treatment group, U is the never-treated group, and
everything else is self-explanatory. Since this involves sample
means, we can calculate the differences manually. Or we can
estimate it with the following regression:

But a more common situation you’ll encounter will be a DD design
with differential timing. And while the decomposition is a bit
complicated, the regression equation itself is straightforward:

When researchers estimate this regression these days, they usually
use the linear fixed-effectsmodel that I discussed in the previous
panel chapter. These linear panel models have gotten the nickname
“twoway fixed effects” because they include both time fixed effects
and unit fixed effects. Since this is such a popular estimator, it’s
important we understand exactly what it is doing and what is it not.

Bacon Decomposition theorem. Goodman-Bacon [2019] provides a
helpful decomposition of the twoway fixed effects estimate of .



Given this is the go-to model for implementing differential timing
designs, I have found his decomposition useful. But as there are
some other decompositions of twoway fixed effects estimators, such
as another important paper by de Chaisemartin and D’Haultfoeuille
[2019], I’ll call it the Bacon decomposition for the sake of branding.

The punchline of the Bacon decomposition theorem is that the
twoway fixed effects estimator is a weighted average of all potential
2×2 DD estimates where weights are both based on group sizes and
variance in treatment. Under the assumption of variance weighted
common trends (VWCT) and time invariant treatment effects, the
variance weighted ATT is a weighted average of all possible ATTs.
And under more restrictive assumptions, that estimate perfectly
matches the ATT. But that is not true when there are time-varying
treatment effects, as time-varying treatment effects in a differential
timing design estimated with twoway fixed effects can generate a
bias. As such, twoway fixed-effects models may be severely biased,
which is echoed in de Chaisemartin and D’Haultfoeuille [2019].

To make this concrete, let’s start with a simple example. Assume
in this design that there are three groups: an early treatment group
(k), a group treated later (l), and a group that is never treated (U).
Groups k and l are similar in that they are both treated but they differ
in that k is treated earlier than l.

Let’s say there are 5 periods, and k is treated in period 2. Then it
spends 40% of its time under treatment, or 0.4. But let’s say l is
treated in period 4. Then it spends 80% of its time treated, or 0.8. I
represent this time spent in treatment for a group as Dk = 0.4 and Dl

= 0.8. This is important, because the length of time a group spends
in treatment determines its treatment variance, which in turn affects
the weight that 2×2 plays in the final adding up of the DD parameter
itself. And rather than write out 2×2 DD estimator every time, we will
just represent each 2×2 as  where a and b are the treatment
groups, and j is the index notation for any treatment group. Thus if
we wanted to know the 2×2 for group k compared to group U, we
would write  or, maybe to save space, just 



So, let’s get started. First, in a single differential timing design, how
many 2 × 2s are there anyway? Turns out there are a lot. To see,
let’s make a toy example. Let’s say there are three timing groups (a,
b, and c) and one untreated group (U). Then there are 9 2×2 DDs.
They are:

See how it works? Okay, then let’s return to our simpler example
where there are two timing groups k and l and one never-treated
group. Groups k and l will get treated at time periods  and  The
earlier period before anyone is treated will be called the “pre” period,
the period between k and l treated is called the “mid” period, and the
period after l is treated is called the “post” period. This will be much
easier to understand with some simple graphs. Let’s look at Figure
70. Recall the definition of a 2×2 DD is

where k and U are just place-holders for any of the groups used in a
2×2.

Substituting the information in each of the four panels of Figure 70
into the equation will enable you to calculate what each specific 2 ×2
is. But we can really just summarize these into three really important
2 × 2s, which are:



Figure 70. Four 2 × 2 DDs [Goodman-Bacon, 2019]. Reprinted with
permission from authors.

where the first 2 × 2 is any timing group compared to the untreated
group (k or l), the second is a group compared to the yet-to-be-
treated timing group, and the last is the eventually-treated group
compared to the already-treated controls.

With this notation in mind, the DD parameter estimate can be
decomposed as follows: 



where the first 2×2 is the k compared to U and the l compared to U
(combined to make the equation shorter).11 So what are these
weights exactly?

where n refers to sample sizes, 
expressions refer to variance of treatment, and the final equation is
the same for two timing groups.12

Two things immediately pop out of these weights that I’d like to
bring to your attention. First, notice how “group” variation matters, as
opposed to unit-level variation. The Bacon decomposition shows that
it’s group variation that twoway fixed effects is using to calculate that
parameter you’re seeking. The more states that adopted a law at the
same time, the bigger they influence that final aggregate estimate
itself.

The other thing that matters in these weights is within-group
treatment variance. To appreciate the subtlety of what’s implied, ask
yourself—how long does a group have to be treated in order to
maximize its treatment variance? Define X = D(1 − D) = D − D2, take
the derivative of V with respect to D, set  equal to zero, and solve
for D∗. Treatment variance is maximized when D = 0.5. Let’s look at
three values of D to illustrate this.



So what are we learning from this, exactly? Well, what we are
learning is that being treated in the middle of the panel actually
directly influences the numerical value you get when twoway fixed
effects are used to estimate the ATT. That therefore means
lengthening or shortening the panel can actually change the point
estimate purely by changing group treatment variance and nothing
more. Isn’t that kind of strange though? What criteria would we even
use to determine the best length?

But what about the “treated on treated weights,” or the skl weight.
That doesn’t have a D̄(1−D̄) expression. Rather, it has a (D̄k − D̄l)(1−
(D̄k−D̄l) expression. So the “middle” isn’t super clear. That’s because
it isn’t the middle of treatment for a single group, but rather it’s the
middle of the panel for the difference in treatment variance. For
instance, let’s say k spends 67% of time treated and l spends 15% of
time treated. Then D̄k − D̄l = 0.52 and therefore 0.52×0.48 = 0.2496,
which as we showed is very nearly the max value of the variance as
is possible (e.g., 0.25). Think about this for a moment—twoway fixed
effects with differential timing weights the 2×2s comparing the two
ultimate treatment groups more if the gap in treatment time is close
to 0.5.

Expressing the decomposition in potential outcomes. Up to now, we
just showed what was inside the DD parameter estimate when using
twoway fixed effects: it was nothing more than an “adding up” of all
possible 2 × 2s weighted by group shares and treatment variance.
But that only tells us what DD is numerically; it does not tell us
whether the parameter estimate maps onto a meaningful average
treatment effect. To do that, we need to take those sample averages
and then use the switching equations replace them with potential



outcomes. This is key to moving from numbers to estimates of
causal effects.

Bacon’s decomposition theorem expresses the DD coefficient in
terms of sample average, making it straightforward to substitute with
potential outcomes using a modified switching equation. With a little
creative manipulation, this will be revelatory. First, let’s define any
year-specific ATT as

Next, let’s define it over a time window W (e.g., a post-treatment
window)

Finally, let’s define differences in average potential outcomes over
time as:

for h = 0 (i.e., Y0) or h = 1 (i.e., Y1)
With trends, differences in mean potential outcomes is non-zero.

You can see that in Figure 71.
We’ll return to this, but I just wanted to point it out to you so that it

would be concrete in your mind when we return to it later.
We can move now from the 2 × 2s that we decomposed earlier

directly into the ATT, which is ultimately the main thing we want to
know. We covered this earlier in the chapter, but review it again here
to maintain progress on my argument. I will first write down the 2×2
expression, use the switching equation to introduce potential
outcome notation, and through a little manipulation, find some ATT
expression.





Figure 71. Changing average potential outcomes.

This can be rewritten even more compactly as:

The 2 × 2 DD can be expressed as the sum of the ATT itself plus a
parallel trends assumption, and without parallel trends, the estimator
is biased. Ask yourself—which of these two differences in the
parallel trends assumption is counterfactual, 



 Which one is observed, in other words,
and which one is not observed? Look and see if you can figure it out
from this drawing in Figure 72.

Only if these are parallel—the counterfactual trend and the
observable trend—does the selection bias term zero out and ATT is
identified.

Figure 72. Visualization of parallel trends.

But let’s keep looking within the decomposition, as we aren’t done.
The other two 2×2s need to be defined since they appear in Bacon’s
decomposition also. And they are:

These look the same because you’re always comparing the treated
unit with an untreated unit (though in the second case it’s just that
they haven’t been treated yet).

But what about the 2 × 2 that compared the late groups to the
already-treated earlier groups? With a lot of substitutions like we did
we get:



I find it interesting our earlier decomposition of the simple difference
in means into ATE + selection bias + heterogeneity treatment effects
bias resembles the decomposition of the late to early 2×2 DD.

The first line is the ATT that we desperately hope to identify. The
selection bias zeroes out insofar as Y0 for k and l has the same
parallel trends from mid to post period. And the treatment effects
bias in the third line zeroes out so long as there are constant
treatment effects for a group over time. But if there is heterogeneity
in time for a group, then the two ATT terms will not be the same, and
therefore will not zero out.

But we can sign the bias if we are willing to assume monotonicity,
which means the mid term is smaller in absolute value than the post
term. Under monotonicity, the interior of the parentheses in the third
line is positive, and therefore the bias is negative. For positive ATT,
this will bias the effects towards zero, and for negative ATT, it will
cause the estimated ATT to become even more negative.

Let’s pause and collect these terms. The decomposition formula
for DD is:

We will substitute the following three expressions into that formula.



Substituting all three terms into the decomposition formula is a bit
overwhelming, so let’s simplify the notation. The estimated DD
parameter is equal to:

In the next few sections, I discuss each individual element of this
expression.

Variance weighted ATT. We begin by discussing the variance
weighted average treatment effect on the treatment group, or
VWATT. Its unpacked expression is:

where σ is like s, only population terms not samples. Notice that the
VWATT simply contains the three ATTs identified above, each of
which was weighted by the weights contained in the decomposition
formula. While these weights sum to one, that weighting is irrelevant
if the ATT are identical.13

When I learned that the DD coefficient was a weighted average of
all individual 2 × 2s, I was not terribly surprised. I may not have
intuitively known that the weights were based on group shares and
treatment variance, but I figured it was probably a weighted average
nonetheless. I did not have that same experience, though, when I



worked through the other two terms. I now turn to the other two
terms: the VWCT and the ATT.

Variance weighted common trends. VWCT stands for variance
weighted common trends. This is just the collection of non-parallel-
trends biases we previously wrote out, but notice—identification
requires variance weighted common trends to hold, which is actually
a bit weaker than we thought before with identical trends. You get
this with identical trends, but what Goodman-Bacon [2019] shows us
is that technically you don’t need identical trends because the
weights can make it hold even if we don’t have exact parallel trends.
Unfortunately, this is a bit of a pain to write out, but since it’s
important, I will.

Notice that the VWCT term simply collects all the non-parallel-trend
biases from the three 2×2s. One of the novelties, though, is that the
non-parallel-trend biases are also weighted by the same weights
used in the VATT.

This is actually a new insight. On the one hand, there are a lot of
terms we need to be zero. On the other hand, it’s ironically a weaker
identifying assumption strictly identical commontrends as the weights
can technically correct for unequal trends. VWCT will zero out with
exact parallel trends and in those situations where the weights adjust
the trends to zero out. This is good news (sort of).

ATT heterogeneity within time bias. When we decomposed the
simple difference in mean outcomes into the sum of the ATE,
selection bias, and heterogeneous treatment effects bias, it really



wasn’t a huge headache. That was because if the ATT differed from
the ATU, then the simple difference in mean outcomes became the
sum of ATT and selection bias, which was still an interesting
parameter. But in the Bacon decomposition, ATT heterogeneity over
time introduces bias that is not so benign. Let’s look at what happens
when there is time-variant within-group treatment effects.

Heterogeneity in the ATT has two interpretations: you can have
heterogeneous treatment effects across groups, and you can have
heterogeneous treatment effects within groups over time. The ATT is
concerned with the latter only. The first case would be heterogeneity
across units but not within groups. When there is heterogeneity
across groups, then the VWATT is simply the average over group-
specific ATTs weighted by a function of sample shares and treatment
variance. There is no bias from this kind of heterogeneity.14

But it’s the second case—when ATT is constant across units but
heterogeneous within groups over time—that things get a little
worrisome. Time-varying treatment effects, even if they are identical
across units, generate cross-group heterogeneity because of the
differing post-treatment windows, and the fact that earlier-treated
groups are serving as controls for later-treated groups. Let’s
consider a case where the counterfactual outcomes are identical, but
the treatment effect is a linear break in the trend (Figure 73). For
instance,   similar to Meer and West [2016].



Figure 73. Within-group heterogeneity in the ATT. Goodman-Bacon, A.
(2019). “Difference-in-Differences with Variation in Treatment Timing.”
Unpublished Manuscript. Permission from author.

Notice how the first 2×2 uses the later group as its control in the
middle period, but in the late period, the later-treated group is using
the earlier treated as its control. When is this a problem?

It’s a problem if there are a lot of those 2× 2s or if their weights are
large. If they are negligible portions of the estimate, then even if it
exists, then given their weights are small (as group shares are also
an important piece of the weighting not just the variance in
treatment) the bias may be small. But let’s say that doesn’t hold.
Then what is going on? The effect is biased because the control
group is experiencing a trend in outcomes (e.g., heterogeneous
treatment effects), and this bias feeds through to the later 2×2
according to the size of the weights, (1−μkl). We will need to correct
for this if our plan is to stick with the twoway fixed effects estimator.



Now it’s time to use what we’ve learned. Let’s look at an
interesting and important paper by Cheng and Hoekstra [2013] to
both learn more about a DD paper and replicate it using event
studies and the Bacon decomposition.

Castle-doctrine statutes and homicides. Cheng and Hoekstra [2013]
evaluated the impact that a gun reform had on violence and to
illustrate various principles and practices regarding differential
timing. I’d like to discuss those principles in the context of this paper.
This next section will discuss, extend, and replicate various parts of
this study.

Trayvon Benjamin Martin was a 17-year-old African-American
young man when George Zimmerman shot and killed him in Sanford,
Florida, on February 26, 2012. Martin was walking home alone from
a convenience store when Zimmerman spotted him, followed him
from a distance, and reported him to the police. He said he found
Martin’s behavior “suspicious,” and though police officers urged
Zimmerman to stay back, Zimmerman stalked and eventually
provoked Martin. An altercation occurred and Zimmerman fatally
shot Martin. Zimmerman claimed self-defense and was nonetheless
charged with Martin’s death. A jury acquitted him of second-degree
murder and of manslaughter.

Zimmerman’s actions were interpreted by the jury to be legal
because in 2005, Florida reformed when and where lethal self-
defense could be used. Whereas once lethal self-defense was only
legal inside the home, a new law, “Stand Your Ground,” had
extended that right to other public places. Between 2000 and 2010,
twenty-one states explicitly expanded the castle-doctrine statute by
extending the places outside the home where lethal force could be
legally used.15 These states had removed a long-standing tradition in
the common law that placed the duty to retreat from danger on the
victim. After these reforms, though, victims no longer had a duty to
retreat in public places if they felt threatened; they could retaliate in
lethal self-defense.

Other changes were also made. In some states, individuals who
used lethal force outside the home were assumed to be reasonably



afraid. Thus, a prosecutor would have to prove fear was not
reasonable, allegedly an almost impossible task. Civil liability for
those acting under these expansions was also removed. As civil
liability is a lower threshold of guilt than criminal guilt, this effectively
removed the remaining constraint that might keep someone from
using lethal force outside the home.

From an economic perspective, these reforms lowered the cost of
killing someone. One could use lethal self-defense in situations from
which they had previously been barred. And as there was no civil
liability, the expected cost of killing someone was now lower. Thus,
insofar as people are sensitive to incentives, then depending on the
elasticities of lethal self-defense with respect to cost, we expect an
increase in lethal violence for the marginal victim. The reforms may
have, in other words, caused homicides to rise.

One can divide lethal force into true and false positives. The true
positive use of lethal force would be those situations in which, had
the person not used lethal force, he or she would have been
murdered. Thus, the true positive case of lethal force is simply a
transfer of one life (the offender) for another (the defender). This is
tragic, but official statistics would not record an net increase in
homicides relative to the counterfactual—only which person had
been killed. But a false positive causes a net increase in homicides
relative to the counterfactual. Some arguments can escalate
unnecessarily, and yet under common law, the duty to retreat would
have defused the situation before it spilled over into lethal force.
Now, though, under these castle-doctrine reforms, that safety valve
is removed, and thus a killing occurs that would not have in
counterfactual, leading to a net increase in homicides.

But that is not the only possible impact of the reforms—deterrence
of violence is also a possibility under these reforms. In Lott and
Mustard [1997], the authors found that concealed-carry laws reduced
violence. They suggested this was caused by deterrence—thinking
someone may be carrying a concealed weapon, the rational criminal
is deterred from committing a crime. Deterrence dates back to
Becker [1968] and Jeremy Bentham before him. Expanding the
arenas where lethal force could be used could also deter crime.



Since this theoretical possibility depends crucially on key elasticities,
which may in fact be zero, deterrence from expanding where guns
can be used to kill someone is ultimately an empirical question.

Cheng and Hoekstra [2013] chose a difference-in-differences
design for their project where the castle doctrine law was the
treatment and timing was differential across states. Their estimating
equation was

where Dit is the treatment parameter. They estimated this equation
using a standard twoway fixed effects model as well as count
models. Ordinarily, the treatment parameter will be a 0 or 1, but in
Cheng and Hoekstra [2013], it’s a variable ranging from 0 to 1,
because some states get the law change mid-year. So if they got the
law in July, then Dit equals 0 before the year of adoption, 0.5 in the
year of adoption and 1 thereafter. The Xit variable included a
particular kind of control that they called “region-by-year fixed
effects,” which was a vector of dummies for the census region to
which the state belonged interacted with each year fixed effect. This
was done so that explicit counterfactuals were forced to come from
within the same census region.16 As the results are not dramatically
different between their twoway fixed effects and count models, I will
tend to emphasize results from the twoway fixed effects.

The data they used is somewhat standard in crime studies. They
used the FBI Uniform Crime Reports Summary Part I files from 2000
to 2010. The FBI Uniform Crime Reports is a harmonized data set on
eight “index” crimes collected from voluntarily participating police
agencies across the country. Participation is high and the data goes
back many decades, making it attractive for many contemporary
questions regarding the crime policy. Crimes were converted into
rates, or “offenses per 100,000 population.”

Cheng and Hoekstra [2013] rhetorically open their study with a
series of simple placebos to check whether the reforms were
spuriously correlated with crime trends more generally. Since



oftentimes many crimes are correlated because of unobserved
factors, this has some appeal, as it rules out the possibility that the
laws were simply being adopted in areas where crime rates were
already rising. For their falsifications they chose motor vehicle thefts
and larcenies, neither of which, they reasoned, should be credibly
connected to lowering the cost of using lethal force in public.

There are so many regression coefficients in Table 77 because
applied microeconomists like to report results under increasingly
restrictive models. In this case, each column is a new regression
with additional controls such as additional fixed-effects
specifications, time-varying controls, a one-year lead to check on the
pre-treatment differences in outcomes, and state-specific trends. As
you can see, many of these coefficients are very small, and because
they are small, even large standard errors yield a range of estimates
that are still not very large.

Next they look at what they consider to be crimes that might be
deterred if policy created a credible threat of lethal retaliation in
public: burglary, robbery, and aggravated assault.

Insofar as castle doctrine has a deterrence effect, then we would
expect a negative effect of the law on offenses. But all of the
regressions shown in Table 78 are actually positive, and very few are
significant even still. So the authors conclude they cannot detect any
deterrence—which does not mean it didn’t happen; just that they
cannot reject the null for large effects.

Now they move to their main results, which is interesting because
it’s much more common for authors to lead with their main results.
But the rhetoric of this paper is somewhat original in that respect. By
this point, the reader has seen a lot of null effects from the laws and
may be wondering, “What’s going on? This law isn’t spurious and
isn’t causing deterrence. Why am I reading this paper?”

The first thing the authors did was show a series of figures
showing the raw data on homicides for treatment and control states.
This is always a challenge when working with differential timing,
though. For instance, approximately twenty states adopted a castle-
doctrine law from 2005 to 2010, but not at the same time. So how
are you going to show this visually? What is the pre-treatment



period, for instance, for the control group when there is differential
timing? If one state adopts

Table 77. Falsification Tests: The effect of castle doctrine laws on larceny
and motor vehicle theft.

Notes: Each column in each panel represents a separate regression. The unit
of observation is state-year. Robust standard errors are clustered at the state
level. Time-varying controls include policing and incarceration rates, welfare
and public assistance spending, median income, poverty rate, unemployment
rate, and demographics. *Significant at the 10 percent level. **Significant at
the 5 percent level. ***Significant at the 1 percent level.



Table 78. The deterrence effects of castle-doctrine laws: Burglary, robbery,
and aggravated assault.



Notes: Each column in each panel represents a separate regression. The unit
of observation is state-year. Robust standard errors are clustered at the state
level. Time-varying controls include policing and incarceration rates, welfare
and public assistance spending, median income, poverty rate, unemployment
rate, and demographics. *Significant at the 10 percent level. **Significant at
the 5 percent level. ***Significant at the 1 percent level.

in 2005, but another in 2006, then what precisely is the pre- and
post-treatment for the control group? So that’s a bit of a challenge,
and yet if you stick with our guiding principle that causal inference
studies desperately need data visualization of the main effects, your
job is to solve it with creativity and honesty to make beautiful figures.
Cheng and Hoekstra [2013] could’ve presented regression
coefficients on leads and lags, as that is very commonly done, but
knowing these authors firsthand, their preference is to give the
reader pictures of the raw data to be as transparent as possible.
Therefore, they showed multiple figures where each figure was a
“treatment group” compared to all the “never-treated” units. Figure
74 shows the Florida case.

Notice that before the passage of the law, the offenses are fairly
flat for treatment and control. Obviously, as I’ve emphasized, this is
not a direct test of the parallel-trends assumption. Parallel trends in
the pre-treatment period are neither necessary nor sufficient. The
identifying assumption, recall, is that of variance-weighted common
trends, which are entirely based on parallel counterfactual trends,
not pretreatment trends. But researchers use parallel pre-treatment
trends like a hunch that the counterfactual trends would have been
parallel. In one sense, parallel pre-treatment rules out some obvious
spurious factors that we should be worried about, such as the law
adoption happening around the timing of a change, even if that’s
simply nothing more than seemingly spurious factors like rising
homicides. But that’s clearly not happening here—homicides weren’t
diverging from controls pre-treatment. They were following a similar
trajectory before Florida passed its law and only then did the trends
converge. Notice that after 2005, which is when the law occurs,
there’s a sizable jump in homicides. There are additional figures like



this, but they all have this set up—they show a treatment group over
time compared to the same “never-treated” group.

Figure 74. Raw data of log homicides per 100,000 for Florida versus never-
treated control states.

Insofar as the cost of committing lethal force has fallen, then we
expect to see more of it, which implies a positive coefficient on the
estimated δ term assuming the heterogeneity bias we discussed
earlier doesn’t cause the twoway fixed effects estimated coefficient
to flip signs. It should be different from zero both statistically and in a
meaningful magnitude. They present four separate types of
specifications—three using OLS, one using negative binomial. But I
will only report the weighted OLS regressions for the sake of space.

There’s a lot of information in Table 79, so let’s be sure not to get
lost. First, all coefficients are positive and similar in magnitude—
between 8% and 10% increases in homicides. Second, three of the
four panels are almost entirely significant. It appears that the bulk of



their evidence suggests the castle-doctrine statute caused an
increase in homicides around 8%.

Table 79. The effect of castle-doctrine laws on homicide.

Notes: Each column in each panel represents a separate regression. The unit
of observation is state-year. Robust standard errors are clustered at the state
level. Time-varying controls include policing and incarceration rates, welfare
and public assistance spending, median income, poverty rate, unemployment
rate, and demographics. *Significant at the 10 percent level. **Significant at
the 5 percent level. ***Significant at the 1 percent level.

Table 80. Randomization inference averages [Cheng and Hoekstra, 2013].

Not satisfied, the authors implemented a kind of randomization
inference-based test. Specifically, they moved the eleven-year panel
back in time covering 1960–2009 and estimated forty placebo
“effects” of passing castle doctrine one to forty years earlier. When
they did this, they found that the average effect from this exercise
was essentially zero. Those results are summarized here. It appears
there is something statistically unusual about the actual treatment



profile compared to the placebo profiles, because the actual profile
yields effect sizes larger than all but one case in any of the placebo
regressions run.

Cheng and Hoekstra [2013] found no evidence that castle-doctrine
laws deter violent offenses, but they did find that it increased
homicides. An 8% net increase in homicide rates translates to
around six hundred additional homicides per year across the twenty-
one adopting states. Thinking back to to the killing of Trayvon Martin
by George Zimmerman, one is left to wonder whether Trayvon might
still be alive had Florida not passed Stand Your Ground. This kind of
counterfactual reasoning can drive you crazy, because it is
unanswerable—we simply don’t know, cannot know, and never will
know the answer to counterfactual questions. The fundamental
problem of causal inference states that we need to know what would
have happened that fateful night without Stand Your Ground and
compare that with what happened with Stand Your Ground to know
what can and cannot be placed at the feet of that law. What we do
know is that under certain assumptions related to the DD design,
homicides were on net around 8%–10% higher than they would’ve
been when compared against explicit counterfactuals. And while that
doesn’t answer every question, it suggests that a nontrivial number
of deaths can be blamed on laws similar to Stand Your Ground.

Replicating Cheng and Hoekstra [2013], sort of. Now that we’ve
discussed Cheng and Hoekstra [2013], I want to replicate it, or at
least do some work on their data set to illustrate certain things that
we’ve discussed, like event studies and the Bacon decomposition.
This analysis will be slightly different from what they did, though,
because their policy variable was on the interval [0, 1] rather than
being a pure dummy. That’s because they carefully defined their
policy variable according to the month in which the law was passed
(e.g., June) divided by a total of 12 months. So if a state passed the
last in June, then they would assign a 0.5 in the first year, and a 1
thereafter. While there’s nothing wrong with that approach, I am
going to use a dummy because it makes the event studies a bit



easier to visualize, and the Bacon decomposition only works with
dummy policy variables.

First, I will replicate his main homicide results from Panel A,
column 6, of Figure 74.





Here we see the main result that castle doctrine expansions led to
an approximately 10% increase in homicides. And if we use the post-
dummy, which is essentially equal to 0 unless the state had fully
covered castle doctrine expansions, then the effect is more like
7.6%.

But now, I’d like to go beyond their study to implement an event
study. First, we need to define pre-treatment leads and lags. To do
this, we use a “time_til” variable, which is the number of years until
or after the state received the treatment. Using this variable, we then
create the leads (which will be the years prior to treatment) and lags
(the years post-treatment).





Our omitted category is the year of treatment, so all coefficients
are with respect to that year. You can see from the coefficients on
the leads that they are not statistically different from zero prior to
treatment, except for leads 8 and 9, which may be because there are
only three states with eight years prior to treatment, and one state
with nine years prior to treatment. But in the years prior to treatment,
leads 1 to 6 are equal to zero and statistically insignificant, although
they do technically have large confidence intervals. The lags, on the
other hand, are all positive and not too dissimilar from one another
except for lag 5, which is around 17%.

Now it is customary to plot these event studies, so let’s do that
now. I am going to show you an easy way and a longer way to do
this. The longer way gives you ultimately more control over what
exactly you want the event study to look like, but for a fast and dirty
method, the easier way will suffice. For the easier way, you will need
to install a program in Stata called coefplot, written by Ben Jann,
author of estout.17



Let’s look now at what this command created. As you can see in
Figure 75, eight to nine years prior to treatment, treatment states



have significantly lower levels of homicides, but as there are so few
states that even have these values (one with −9 and three with −8),
we may want to disregard the relevance of these negative effects if
for no other reason than that there are so few units in the dummy
and we know from earlier that that can lead to very high
overrejection rates [MacKinnon and Webb, 2017]. Instead, notice
that for the six years prior to treatment, there is virtually no difference
between the treatment states and the control states.

Figure 75. Homicide event-study plots using coefplot. Cheng and Hoekstra
[2013].

But, after the year of treatment, that changes. Log murders begin
rising, which is consistent with our post dummy that imposed zeros
on all pre-treatment leads and required that the average effect post-
treatment be a constant.

I promised to show you how to make this graph in a way that gave
more flexibility, but you should be warned, this is a bit more
cumbersome.









You can see the figure that this creates in Figure 76. The
difference between coefplot and this twoway command connects the
event-study coefficients with lines, whereas coefplot displayed them
as coefficients hanging in the air. Neither is right or wrong; I merely
wanted you to see the differences for your own sake and to have
code that you might experiment with and adapt to your own needs.

But the thing about this graph is that the leads are imbalanced.
There’s only one state, for instance, in the ninth lead, and there’s
only three in the eighth lead. So I’d like you to do two modifications
to this. First, I’d like you to replace the sixth lead so that it is now
equal to leads 6–9. In other words, we will force these late adopters
to have the same coefficient as those with six years until treatment.
When you do that, you should get Figure 77.

Next, let’s balance the event study by dropping the states who only
show up in the seventh, eighth, and ninth leads.18 When you do this,
you should get Figure 78.



Figure 76. Homicide event study plots created manually with twoway. Cheng
and Hoekstra [2013].



Figure 77. Homicide event-study plots using twoway. Cheng and Hoekstra
[2013].



Figure 78. Homicide event-study plots using twoway. Cheng and Hoekstra
[2013].

If nothing else, exploring these different specifications and cuts of
the data can help you understand just how confident you should be
that prior to treatment, treatment and control states genuinely were
pretty similar. And if they weren’t similar, it behooves the researcher
to at minimum provide some insight to others as to why the
treatment and control groups were dissimilar in levels. Because after
all—if they were different in levels, then it’s entirely plausible they
would be different in their counterfactual trends too because why
else are they different in the first place [Kahn-Lang and Lang, 2019].

Bacon decomposition. Recall that we run into trouble using the
twoway fixed-effects model in a DD framework insofar as there are
heterogeneous treatment effects over time. But the problem here
only occurs with those 2 × 2s that use late-treated units compared to



early-treated units. If there are few such cases, then the issue is
much less problematic depending on the magnitudes of the weights
and the size of the DD coefficients themselves. What we are now
going to do is simply evaluate the frequency with which this issue
occurs using the Bacon decomposition. Recall that the Bacon
decomposition decomposes the twoway fixed effects estimator of the
DD parameter into weighted averages of individual 2 × 2s across the
four types of 2 × 2s possible. The Bacon decomposition uses a
binary treatment variable, so we will reestimate the effect of castle-
doctrine statutes on logged homicide rates by coding a state as
“treated” if any portion of the year it had a castle-doctrine
amendment. We will work with the special case of no covariates for
simplicity, though note that the decomposition works with the
inclusion of covariates as well [Goodman-Bacon, 2019]. Stata users
will need to download -ddtiming- from Thomas Goldring’s website,
which I’ve included in the first line.

First, let’s estimate the actual model itself using a post dummy
equaling one if the state was covered by a castle-doctrine statute
that year. Here we find a smaller effect than many of Cheng and
Hoekstra’s estimates because we do not include their state-year
interaction fixed effects strategy among other things. But this is just
for illustrative purposes, so let’s move to the Bacon decomposition
itself. We can decompose the parameter estimate into the three
different types of 2 × 2s, which I’ve reproduced in Table 81.







Table 81. Bacon decomposition example.

Taking these weights, let’s just double check that they do indeed
add up to the regression estimate we just obtained using our twoway
fixed-effects estimator.19

That is our main estimate, and thus confirms what we’ve been
building on, which is that the DD parameter estimate from a twoway
fixed-effects estimator is simply a weighted average over the
different types of 2 × 2s in any differential design. Furthermore, we
can see in the Bacon decomposition that most of the 0.069
parameter estimate is coming from comparing the treatment states
to a group of never-treated states. The average DD estimate for that
group is 0.078 with a weight of 0.899. So even though there is a later
to early 2×2 in the mix, as there always will be with any differential
timing, it is small in terms of influence and ultimately pulls down the
estimate.

But let’s now visualize this as distributing the weights against the
DD estimates, which is a useful exercise. The horizontal line in
Figure 79 shows the average DD estimate we obtained from our
fixed-effects regression of 0.069. But then what are these other
graphics? Let’s review.



Each icon in the graphic represents a single 2×2 DD. The
horizontal axis shows the weight itself, whereas the vertical axis
shows the magnitude of that particular 2×2. Icons further to the right
therefore will be more influential in the final average DD than those
closer to zero.

Figure 79. Bacon decomposition of DD into weights and single 2×2s.

There are three kinds of icons here: an early to late group
comparison (represented with a light ×), a late to early (dark ×), and
a treatment compared to a never-treated (dark triangle). You can see
that the dark triangles are all above zero, meaning that each of these
2 × 2s (which correspond to a particular set of states getting the
treatment in the same year) is positive. Now they are spread out
somewhat—two groups are on the horizontal line, but the rest are
higher. What appears to be the case, though, is that the group with
the largest weight is really pulling down the parameter estimate and
bringing it closer to the 0.069 that we find in the regression.



The future of DD. The Bacon decomposition is an important phase in
our understanding of the DD design when implemented using the
twoway fixed effects linear model. Prior to this decomposition, we
had only a metaphorical understanding of the necessary conditions
for identifying causal effects using differential timing with a twoway
fixed-effects estimator. We thought that since the 2×2 required
parallel trends, that that “sort of” must be what’s going on with
differential timing too. And we weren’t too far off—there is a version
of parallel trends in the identifying assumptions of DD using twoway
fixed effects with differential timing. But what Goodman-Bacon [2019]
also showed is that the weights themselves drove the numerical
estimates too, and that while some of it was intuitive (e.g., group
shares being influential) others were not (e.g., variance in treatment
being influential).

The Bacon decomposition also highlighted some of the unique
challenges we face with differential timing. Perhaps no other problem
is better highlighted in the diagnostics of the Bacon decomposition
than the problematic “late to early” 2×2 for instance. Given any
heterogeneity bias, the late to early 2×2 introduces biases even with
variance weighted common trends holding! So, where to now?

From 2018 to 2020, there has been an explosion of work on the
DD design. Much of it is unpublished, and there has yet to appear
any real consensus among applied people as to how to handle it.
Here I would like to outline what I believe could be a map as you
attempt to navigate the future of DD. I have attempted to divide this
new work into three categories: weighting, selective choice of “good”
2 × 2s, and matrix completion.

What we know now is that there are two fundamental problems
with the DD design. First, there is the issue of weighting itself. The
twoway fixed-effects estimator weights the individual 2 × 2s in ways
that do not make a ton of theoretical sense. For instance, why do we
think that groups at the middle of the panel should be weighted more
than those at the end? There’s no theoretical reason we should
believe that. But as Goodman-Bacon [2019] revealed, that’s
precisely what twoway fixed effects does. And this is weird because
you can change your results simply by adding or subtracting years to



the panel—not just because this changes the 2×2, but also because
it changes the variance in treatment itself! So that’s weird.20

But this is not really the fatal problem, you might say, with twoway
fixed-effects estimates of a DD design. The bigger issue was what
we saw in the Bacon decomposition—you will inevitably use past
treated units as controls for future treated units, or what I called the
“late to early 2×2.” This happens both in the event study and in the
designs modeling the average treatment effect with a dummy
variable. Insofar as it takes more than one period for the treatment to
be fully incorporated, then insofar as there’s substantial weight given
to the late to early 2×2s, the existence of heterogeneous treatment
effects skews the parameter away from the ATT—maybe even
flipping signs!21

Whereas the weird weighting associated with twoway fixed effects
is an issue, it’s something you can at least check into because the
Bacon decomposition allows you to separate out the 2×2 average
DD values from their weights. Thus, if your results are changing by
adding years because your underlying 2 × 2s are changing, you
simply need to investigate it in the Bacon decomposition. The
weights and the 2 × 2s, in other words, are things that can be directly
calculated, which can be a source of insight into why twoway fixed
effects estimator is finding what it finds.

But the second issue is a different beast altogether. And one way
to think of the emerging literature is that many authors are
attempting to solve the problem that some of these 2 × 2s (e.g., the
late to early 2×2) are problematic. Insofar as they are problematic,
can we improve over our static twoway fixed-effects model? Let’s
take a few of these issues up with examples from the growing
literature.

Another solution to the weird weighting twoway fixed-effects
problem has been provided by Callaway and Sant’Anna [2019].22

Callaway and Sant’Anna [2019] approach the DD framework very
differently than Goodman-Bacon [2019]. Callaway and Sant’Anna
[2019] use an approach that allows them to estimate what they call
the group-time average treatment effect, which is just the ATT for a



given group at any point in time. Assuming parallel trends conditional
on time-invariant covariates and overlap in a propensity score, which
I’ll discuss below, you can calculate group ATT by time (relative time
like in an event study or absolute time). One unique part of these
authors’ approach is that it is non-parametric as opposed to
regression-based. For instance, under their identifying assumptions,
their nonparametric estimator for a group ATT by time is:

where the weights, p, are propensity scores, G is a binary variable
that is equal to 1 if an individual is first treated in period g, and C is a
binary variable equal to one for individuals in the control group.
Notice there is no time index, so these C units are the never-treated
group. If you’re still with me, you should find the weights
straightforward. Take observations from the control group as well as
group g, and omit the other groups. Then weight up those
observations from the control group that have characteristics similar
to those frequently found in group g and weight down observations
from the control group that have characteristics rarely found in group
g. This kind of reweighting procedure guarantees that the covariates
of group g and the control group are balanced. You can see
principles from earlier chapters making their way into this DD
estimation—namely, balance on covariates to create exchangeable
units on observables.

But because we are calculating group-specific ATT by time, you
end up with a lot of treatment effect parameters. The authors
address this by showing how one can take all of these treatment
effects and collapse them into more interpretable parameters, such
as a larger ATT. All of this is done without running a regression, and
therefore avoids some of the unique issues created in doing so.

One simple solution might be to estimate your event-study model
and simply take the mean over all lags using a linear combination of



all point estimates [Borusyak and Jaravel, 2018]. Using this method,
we in fact find considerably larger effects or nearly twice the size as
we get from the simpler static twoway fixed-effects model. This is
perhaps an improvement because weights can be large on the long-
run effects due to large effects from group shares. So if you want a
summary measure, it’s better to estimate the event study and then
average them after the fact.

Another great example of a paper wrestling with the biases
brought up by heterogeneous treatment effects is Sun and Abraham
[2020]. This paper is primarily motivated by problems created in
event studies, but you can see some of the issues brought up in
Goodman-Bacon [2019]. In an event study with differential timing, as
we discussed earlier, leads and lags are often used to measure
dynamics in the treatment itself. But these can produce causally
uninterpretable results because they will assign non-convex weights
to cohort-specific treatment effects. Similar to Callaway and
Sant’Anna [2019], they propose estimating a group-specific dynamic
effect and from those calculate a group specific estimate.

The way I organize these papers in my mind is around the idea of
heterogeneity in time, the use of twoway fixed effects, and
differential timing. The theoretical insight from all these papers is the
coefficients on the static twoway fixed-effects leads and lags will be
unintelligible if there is heterogeneity in treatment effects over time.
In this sense, we are back in the world that Goodman-Bacon [2019]
revealed, in which heterogeneity treatment effect biases create real
challenges for the DD design using twoway fixed effects.23

Their alternative is estimate a “saturated” model to ensure that the
heterogeneous problem never occurs in the first place. The
proposed alternative estimation technique is to use an interacted
specification that is saturated in relative time indicators as well as
cohort indicators. The treatment effect associated with this design is
called the interaction-weighted estimator, and using it, the DD
parameter is equivalent to the difference between the average
change in outcomes for a given cohort in those periods prior to
treatment and the average changes for those units that had not been



treated at the time interval. Additionally, this method uses the never-
treated units as controls, and thereby avoids the hairy problems
noted in Goodman-Bacon [2019] when computing later to early 2 ×
2s.24

Another paper that attempts to circumvent the weirdness of the
regression-based method when there are numerous late to early 2 ×
2s is Cengiz et al. [2019]. This is bound to be a classic study in labor
for its exhaustive search for detectable repercussions of the
minimum wage on low-paying jobs. The authors ultimately find little
evidence to support any concern, but how do they come to this
conclusion?

Cengiz et al. [2019] take a careful approach by creating separate
samples. The authors want to know the impact of minimum-wage
changes on low-wage jobs across 138 state-level minimum-wage
changes from 1979 to 2016. The authors in an appendix note the
problems with aggregating individual DD estimates into a single
parameter, and so tackle the problem incrementally by creating 138
separate data sets associated with a minimum-wage event. Each
sample has both treatment groups and control groups, but not all
units are used as controls. Rather, only units that were not treated
within the sample window are allowed to be controls. Insofar as a
control is not treated during the sample window associated with a
treatment unit, it can be by this criteria used as a control. These 138
estimates are then stacked to calculate average treatment effects.
This is an alternative method to the twoway fixed-effects DD
estimator because it uses a more stringent criteria for whether a unit
can be considered a control. This in turn circumvents the
heterogeneity problems that Goodman-Bacon [2019] notes because
Cengiz et al. [2019] essentially create 138 DD situations in which
controls are always “never-treated” for the duration of time under
consideration.

But the last methodology I will discuss that has emerged in the last
couple of years is a radical departure from the regression-based
methodology altogether. Rather than use a twoway fixed-effects
estimator to estimate treatment effects with differential timing, Athey



et al. [2018] propose a machine-learning-based methodology called
“matrix completion” for panel data. The estimator is exotic and bears
some resemblance to matching imputation and synthetic control.
Given the growing popularity of placing machine learning at the
service of causal inference, I suspect that once Stata code for matrix
completion is introduced, we will see this procedure used more
broadly.

Matrix completion for panel data is a machine-learning-based
approach to causal inference when one is working explicitly with
panel data and differential timing. The application of matrix
completion to causal inference has some intuitive appeal given one
of the ways that Rubin has framed causality is as a missing data
problem. Thus, if we are missing the matrix of counterfactuals, we
might explore whether this method from computer science could
assist us in recovering it. Imagine we could create two matrices of
potential outcomes: a matrix of Y0 potential outcomes for all panel
units over time and Y1. Once treatment occurs, a unit switches from
Y0 to Y1 under the switching equation, and therefore the missing
data problem occurs. Missingness is simply another way of
describing the fundamental problem of causal inference for there will
never be a complete set of matrices enabling calculation of
interesting treatment parameters given the switching equation only
assigns one of them to reality.

Say we are interested in this treatment effect parameter:

where Y1 are the observed outcomes in a panel unit at some post-
treatment period, Z0 is the estimated missing elements of the Y0

matrix for the post-treatment period, and NT is the number of
treatment units. Matrix completion uses the observed elements of
the matrix’s realized values to predict the missing elements of the Y0

matrix (missing due to being in the post-treatment period and
therefore having switched from Y0 to Y1).



Analytically, this imputation is done via something called
regularization-based prediction. The objective in this approach is to
optimally predict the missing elements by minimizing a convex
function of the difference between the observed matrix of Y0 and the
unknown complete matrix Z0 using nuclear norm regularization. Let
denote the row and column indices (i, j) of the observed entries of
the outcomes, then the objective function can be written as

where ||Z0|| is the nuclear norm (sum of singular values of Z0). The
regularization parameter Δ is chosen using tenfold cross validation.
Athey et al. [2018] show that this procedure outperforms other
methods in terms of root mean squared prediction error.

Unfortunately, at present estimation using matrix completion is not
available in Stata. R packages for it do exist, such as the gsynth
package, but it has to be adapted for Stata users. And until it is
created, I suspect adoption will lag.

Conclusion
America’s institutionalized state federalism provides a constantly
evolving laboratory for applied researchers seeking to evaluate the
causal effects of laws and other interventions. It has for this reason
probably become one of the most popular forms of identification
among American researchers, if not the most common. A Google
search of the phrase “difference-in-differences” brought up 45,000
hits. It is arguably the most common methodology you will use—
more than IV or matching or even RDD, despite RDD’s greater
perceived credibility. There is simply a never-ending flow of quasi-
experiments being created by our decentralized data-generating
process in the United States made even more advantageous by so
many federal agencies being responsible for data collection, thus
ensuring improved data quality and consistency.



But, what we have learned in this chapter is that while there is a
current set of identifying assumptions and practices associated with
the DD design, differential timing does introduce some thorny
challenges that have long been misunderstood. Much of the future of
DD appears to be mounting solutions to problems we are coming to
understand better, such as the odd weighting of regression itself and
problematic 2×2 DDs that bias the aggregate ATT when
heterogeneity in the treatment effects over time exists. Nevertheless,
DD—and specifically, regression-based DD—is not going away. It is
the single most popular design in the applied researcher’s toolkit and
likely will be for many years to come. Thus it behooves the
researcher to study this literature carefully so that they can better
protect against various forms of bias.

Notes
1 A simple search on Google Scholar for phrase “difference-in-differences”

yields over forty thousand hits.
2 John Snow is one of my personal heroes. He had a stubborn commitment

to the truth and was unpersuaded by low-quality causal evidence. That
simultaneous skepticism and open-mindedness gave him the willingness to
question common sense when common sense failed to provide satisfactory
explanations.

3 You’ll sometimes see acronyms for difference-in-differences like DD, DiD,
Diff-indiff, or even, God forbid, DnD.

4 That literature is too extensive to cite here, but one can find reviews of a
great deal of the contemporary literature on minimum wages in Neumark et al.
[2014] and Cengiz et al. [2019].

5 James Buchanan won the Nobel Prize for his pioneering work on the
theory of public choice. He was not, though, a labor economist, and to my
knowledge did not have experience estimating causal effects using explicit
counterfactuals with observational data. A Google Scholar search for “James
Buchanan minimum wage” returned only one hit, the previously mentioned
Wall Street Journal letter to the editor. I consider his criticism to be
ideologically motivated ad hominem and as such unhelpful in this debate.

6 Financial economics also has a procedure called the event study [Binder,
1998], but the way that event study is often used in contemporary causal
inference is nothing more than a difference-in-differences design where,



instead of a single post-treatment dummy, you saturate a model with leads and
lags based on the timing of treatment.

7 In the original Cunningham and Cornwell [2013], we estimated models
with multiway clustering correction, but the package for this in Stata is no
longer supported. Therefore, we will estimate the same models as in
Cunningham and Cornwell [2013] using cluster robust standard errors. In all
prior analysis, I clustered the standard errors at the state level so as to
maintain consistency with this code.

8 There is a third prediction on the 25- to 29-year-olds, but for the sake of
space, I only focus on the 20- to 24-year-olds.

9 Milk is ironically my favorite drink, even over IPAs, so I am not persuaded
by this anti-test.

10 Breakthroughs in identifying peer effects eventually emerged, but only
from studies that serendipitously had randomized peer groups such as
Sacerdote [2001], Lyle [2009], Carrell et al. [2019], Kofoed and McGovney
[2019], and several others. Many of these papers either used randomized
roommates or randomized companies at military academies. Such natural
experiments are rare opportunities for studying peer effects for their ability to
overcome the mirror problem.

11 All of this decomposition comes from applying the Frisch-Waugh
theorem to the underlying twoway fixed effects estimator.

12 A more recent version of Goodman-Bacon [2019] rewrites this weighting
but they are numerically the same, and for these purposes, I prefer the
weighting scheme discussed in an earlier version of the paper. See Goodman-
Bacon [2019] for the equivalence between his two weighting descriptions.

13 Heterogeneity in ATT across k and l is not the source of any biases. Only
heterogeneity over time for k or l’s ATT introduces bias. We will discuss this in
more detail later.

14 Scattering the weights against the individual 2 × 2s can help reveal if the
overall coefficient is driven by a few different 2 × 2s with large weights.

15 These laws are called castle-doctrine statutes because the home—
where lethal self-defense had been protected—is considered one’s castle.

16 This would violate SUTVA insofar as gun violence spills over to a
neighboring state when the own state passes a reform.

17 Ben Jann is a valuable contributor to the Stata community for creating
several community ado packages, such as -estout- for making tables and -
coefplot- for making pictures of regression coefficients.

18 Alex Bartik once recommended this to me.
19 This result is different from Cheng and Hoekstra’s because it does not

include the region by year fixed effects. I exclude them for simplicity.



20 This is less an issue with event study designs because the variance of
treatment indicator is the same for everyone.

21 In all seriousness, it is practically modal in applied papers that utilize a
DD design to imagine that dynamic treatment effects are at least plausible ex
ante, if not expected. This kind of “dynamic treatment effects” is usually
believed as a realistic description of what we think could happen in any policy
environment. As such, the biases associated with panel fixed effects model
with twoway fixed effects is, to be blunt, scary. Rarely have I seen a study
wherein the treatment was merely a one-period shift in size. Even in the Miller
et al. [2019] paper, the effect of ACA-led Medicaid expansions was a gradual
reduction in annual mortality over time. Figure 60 really is probably a typical
kind of event study, not an exceptional one.

22 Sant’Anna has been particularly active in this area in producing elegant
econometric solutions to some of these DD problems.

23 One improvement over the binary treatment approach to estimating the
treatment effect is when using an event study, the variance of treatment issues
are moot.

24 But in selecting only the never-treated as controls, the approach may
have limited value for those situations where the number of units in the never-
treated pool is extremely small.
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