Lab 6 引入协变量的RDD效应分析(儿童死亡率案例)
6.1 实验说明
6.1.1 实验内容
实验目标:引入协变量情况下,骤变RDD的局部线性回归估计及分析,复现儿童死亡率案例(包括Table21.1、Figure 21.2a的全部过程及结果(参看:HANSEN B. Econometrics[M].2021(作者手稿). 第21章 Regression Discontinuity. )
主要内容包括:
在引入两个额外协变量情形下,基于骤变RDD(SRDD)模型,进行局部线性回归方法(LLR)分析,估计其断点处置效应ATE(\(\widehat{\theta}\))及其估计标准误。
对比无协变量SRDD模型(上一次实验)和有协变量SRDD,对这两个模型进行综合比较,并得出相关结论
6.2 案例描述
6.2.1 死亡率案例(续):背景说明
援助项目与儿童死亡率:
我们继续使用前面(Ludwig J 等, 2007)的研究案例,来评估美国联邦政府脱贫援助项目(Head Start)对儿童死亡率的骤变RDD政策效应。现在我们考虑使用两个协变量(covariates):
县级黑人人口占比(
black pop percentage
) \(Z_a\)县级城镇人口占比(
urban pop percentage
) \(Z_a\)
]
上述两个协变量,本质上可以视作为收入变量(
income
)的代理变量(proxy)。下面我们将使用(Robinson P M, 1988)的半参数效率估计方法来评估项目援助的断点处置效应(RDD ATE)。
6.2.2 读取案例数据
## This file generates Figure 21.2a and Table 21.1 Covariates
## Head Start RDD with Covariates
## This file uses the package haven
## This file uses the data file LM2007.dta
#### The data file LM2007.dta is used ####
library(haven)
dt_path <- here::here("data/LM2007.dta")
dat <- read_dta(dt_path)
y <- dat$mort_age59_related_postHS
x <- dat$povrate60
Za <- dat$census1960_pctblack
Zb <- dat$census1960_pcturban
c <- 59.1984
dt_head <- tibble(X= x,
Y = y,
Za = Za,
Zb = Zb) %>%
mutate(D= ifelse(X>=c,1,0))
6.2.3 数据呈现
dt_head %>%
add_column(obs = 1:nrow(.), .before = "X") %>%
DT::datatable(
caption = paste0("增加协变量的援助项目数据集(n=2783)"),
options = list(dom = "tip", pageLength =8))%>%
formatRound(c(2:5), digits = c(4,4,1,1))
- 样本数据的描述性统计如下:
X Y Za Zb
Min. :15 Min. : 0 Min. : 0 Min. : 0
1st Qu.:24 1st Qu.: 0 1st Qu.: 0 1st Qu.: 0
Median :34 Median : 0 Median : 2 Median : 28
Mean :37 Mean : 2 Mean :11 Mean : 29
3rd Qu.:47 3rd Qu.: 3 3rd Qu.:15 3rd Qu.: 48
Max. :82 Max. :136 Max. :83 Max. :100
D
Min. :0.00
1st Qu.:0.00
Median :0.00
Mean :0.11
3rd Qu.:0.00
Max. :1.00
6.2.4 数据分组描述性统计
我们根据处置变量D进行数据分组,并进行描述性统计,统计分析代码如下:
smry_grouped <- dt_head %>%
group_by(D) %>%
dplyr::summarize(n = n(),
x_mean = mean(X, na.rm =T),
x_min = min(X,na.rm = T),
x_max = max(X, na.rm = T),
x_sd = sd(X),
y_mean = mean(Y, na.rm =T),
y_min = min(Y,na.rm = T),
y_max = max(Y, na.rm = T),
y_sd = sd(Y),
za_mean = mean(Za, na.rm =T),
za_min = min(Za,na.rm = T),
za_max = max(Za, na.rm = T),
za_sd = sd(Za),
zb_mean = mean(Zb, na.rm =T),
zb_min = min(Zb,na.rm = T),
zb_max = max(Zb, na.rm = T),
zb_sd = sd(Zb)
) %>%
pivot_longer(names_to = "stat", values_to = "value", -D) %>%
pivot_wider(names_from = D, values_from = value) %>%
rename_all(., ~c("stats","D0","D1"))
处置组和控制组描述性统计表如下:
6.2.5 数据散点图
#### basic plot ####
lwd <- 0.6
fsize <- 16
p0 <- ggplot() +
geom_point(aes(X, Y),data = dt_head, pch=21,alpha=0.6) +
geom_vline(aes(xintercept=c),
color = "orange", lty = "dotted", lwd=lwd) +
labs(x= "X贫困线", y ="Y儿童死亡率") +
scale_y_continuous(breaks = seq(0,80,20), limits = c(0,80)) +
scale_x_continuous(breaks = seq(10,90,10), limits = c(10,90)) +
theme_bw() +
theme(text = element_text(size = fsize))
6.3 过程0:设定相关参数和辅助计算工具
6.3.1 R运算代码
考虑到对断点两侧的数据,我们要多次进行局部线性估计(LLR)、计算预测误差、计算标准误(从而计算置信区间),因此我们可以事先设计并封装好一些有用的辅助函数(辅助工具)。
为了简化计算,我们这里不再进行LLR的最优谱宽选择过程,而是直接先验设定好一个初始值(\(h=8\))。
我们会多次分别对断点两侧运用LLR估计流程(我们已经在非参数局部回归估计中学习过了!)
#### RDD Helper function ####
# specify parameters and basic calculation
h <- 8
T <- as.numeric(x >= c)
y1 <- y[T==0]
y2 <- y[T==1]
x1 <- x[T==0]
x2 <- x[T==1]
n1 <- length(y1)
n2 <- length(y2)
n <- n1+n2
# specify bins
g1 <- seq(15,59.2,.2)
g2 <- seq(59.2,82,.2)
G1 <- length(g1)
G2 <- length(g2)
# Helper function for triangle kernel function
TriKernel <- function(x) {
s6 <- sqrt(6)
ax <- abs(x)
f <- (1-ax/s6)*(ax < s6)/s6
return(f)
}
# Helper function for LLR estimation
LL_EST <- function(y,x,g,h) {
G <- length(g)
m <- matrix(0,G,1)
z <- matrix(1,length(y),1)
for (j in 1:G){
xj <- x-g[j]
K <- TriKernel(xj/h)
zj <- cbind(z,xj)
zz <- t(cbind(K,xj*K))
beta <- solve(zz%*%zj,zz%*%y)
m[j] <- beta[1]
}
return(m)
}
# Helper function for forecast residuals
LL_Residual <- function(y,x,h) {
n <- length(y)
e <- matrix(0,n,1)
z <- matrix(1,n,1)
for (j in 1:n){
xj <- x-x[j]
K <- TriKernel(xj/h)
K[j] <- 0
zj <- cbind(z,xj)
zz <- t(cbind(K,xj*K))
beta <- solve(zz%*%zj,zz%*%y)
e[j] <- y[j] - beta[1]
}
return(e)
}
# Helper function for standard error
LL_SE <- function(y,x,g,h) {
G <- length(g)
s <- matrix(0,G,1)
z <- matrix(1,length(y),1)
e <- LL_Residual(y,x,h)
for (j in 1:G){
xj <- x-g[j]
K <- TriKernel(xj/h)
zj <- cbind(z,xj)
zz <- cbind(K,xj*K)
ZKZ <- solve(t(zz)%*%zj)
Ke <- K*e
ze <- cbind(Ke,xj*Ke)
V <- ZKZ%*%crossprod(ze)%*%ZKZ
s[j] = sqrt(V[1,1])
}
return(s)
}
6.3.2 过程步骤解读:协变量RDD分析的规则策略
在进行协变量RDD分析之前,我们设定如下的规则策略:
规则1:我们设定先验谱宽为 \(h=8\),断点值设定为 \(c =59.1984\%\)。
规则2:分别设定断点两边箱组中心点序列值(center of bins)。我们将采用非对称箱组设置方法:
- 控制组(断点左边)的评估范围为 \([15, 59.2]\),序列间隔为
0.2
。评估总箱组数为 \(g1=222\),待评估序列值为 \(15.0, 15.2, 15.4, 15.6, 15.8, \cdots,58.6, 58.8, 59.0, 59.2\)。- 处置组(断点右边)的评估范围为 \([59.2, 82]\),序列间隔为
0.2
。评估总箱组数为 \(g2=115\),待评估序列值为 \(59.2, 59.4, 59.6, 59.8, 60.0, \cdots,81.4, 81.6, 81.8, 82.0\)。
规则3:如果使用局部线性估计法(LL),则采用三角核函数(triangle kenerl)。
规则4:我们将使用(Robinson P M, 1988)的半参数效率估计方法来评估断点处置效应(RDD ATE)。
6.4 过程2:协变量SRDD估计
协变量SRDD过程(R代码)如下:
#### RDD Estimation ####
#### step 1: LL estimate Y on X ####
## obtain residual of stage 1
e1 <- LL_Residual(y1,x1,h)
e2 <- LL_Residual(y2,x2,h)
e <- rbind(e1,e2)
#### step 2: LL estimate Z on X ####
## obtain residual of stage 2
Ra <- LL_Residual(Za,x,h)
Rb <- LL_Residual(Zb,x,h)
Z <- cbind(Za,Zb)
R <- cbind(Ra,Rb)
# step 3: OLS ####
## regress estimate residual of stage 1 on residual of stage 2
## obtain the coefficient and standard errors
## no intercept !
XXR <- solve(crossprod(R)) # inverse matrix
beta <- XXR%*%(t(R)%*%e)
u <- e - R%*%beta
Ru <- R*(u%*%matrix(1,1,ncol(R)))
V <- XXR%*%crossprod(Ru)%*%XXR # robust se
sbeta <- sqrt(diag(V))
tstat <- beta/sbeta
pvalue <- 2*(1-pnorm(abs(tstat)))
betas <- cbind(beta,sbeta,tstat,pvalue)
#### step 4: Construct the residual ####
## obtain constructed residual
zm <- colMeans(Z)%*%beta
Z1 <- Z[T==0,]
Z2 <- Z[T==1,]
yZ <- y - Z%*%beta
yZ1 <- y1 - Z1%*%beta
yZ2 <- y2 - Z2%*%beta
#### step 5: LL ATE estimate ####
## LL estimate of constructed residual on X
## obtain ATE and standard errors
m1 <- LL_EST(yZ1,x1,g1,h) + matrix(zm,G1,1)
m2 <- LL_EST(yZ2,x2,g2,h) + matrix(zm,G2,1)
s1 <- LL_SE(yZ1,x1,g1,h)
s2 <- LL_SE(yZ2,x2,g2,h)
L1 <- m1-1.96*s1
U1 <- m1+1.96*s1
L2 <- m2-1.96*s2
U2 <- m2+1.96*s2
# rdd effect
theta_lft <- m1[G1]
theta_rgt <- m2[1]
theta <- m2[1]-m1[G1]
setheta <- sqrt(s1[G1]^2 + s2[1]^2)
tstat <- theta/setheta
pvalue <- 2*(1-pnorm(abs(tstat)))
6.5 过程3:将RDD估计结果整理成相关表格
6.5.1 将断点两侧的m(x)估计结果整理成表格(R代码)
#### tibble of mx estimate related ####
tbl_mx1 <- tibble(group = "control",
xg = g1,
mx=as.vector(m1),
s = as.vector(s1),
lwr = as.vector(L1),
upr = as.vector(U1))
tbl_mx2 <- tibble(group = "treat",
xg = g2,
mx=as.vector(m2),
s = as.vector(s2),
lwr = as.vector(L2),
upr = as.vector(U2))
tb_mxh <- bind_rows(tbl_mx1, tbl_mx2)
6.6 过程4:绘制RDD分析图(mx估计值)
6.6.1 对绘制底图(R代码)
lwd <- 0.6
lwadd <- 0.2
p00 <- ggplot() +
geom_point(aes(X, Y),data = dt_head, pch=21,alpha=0.3) +
geom_vline(aes(xintercept=c),
color = "red", lty = "dotted", lwd=lwd) +
labs(x= "X贫困线", y ="Y儿童死亡率") +
scale_y_continuous(breaks = seq(0,5,1), limits = c(0,5)) +
scale_x_continuous(breaks = seq(10,85,10), limits = c(10,85)) +
theme_bw() +
theme(text = element_text(size = fsize))
6.6.2 对断点左边绘制mx估计图(R代码)
# mx plot for left part
p_mxh1 <- p00 +
geom_line(aes(x = xg, y = mx,
color="m1", lty="m1"),
lwd = lwd+lwadd,
data = base::subset(tb_mxh,group=="control")) +
scale_color_manual(
name="",
breaks = c("m1"),
labels = c(expression(m(x):control)),
values=c("purple"))+
scale_linetype_manual(
name="",
breaks = c("m1"),
labels = c(expression(m(x):control)),
values=c("solid"))+
theme(legend.position = "right",
text = element_text(size = fsize))
6.6.3 对断点右边绘制mx估计图(R代码)
# mx plot for right part
p_mxh2 <- p00 +
geom_line(aes(x = xg, y = mx,
color="m2", lty="m2"),
lwd = lwd+lwadd,
data = base::subset(tb_mxh,group=="treat")) +
scale_color_manual(
name="",
breaks = c("m2"),
labels = c(expression(m(x):treat)),
values=c("blue"))+
scale_linetype_manual(
name="",
breaks = c("m2"),
labels = c(expression(m(x):treat)),
values=c("solid"))+
theme(legend.position = "right",
text = element_text(size = fsize))
6.6.4 同时对断点两边绘制mx估计图(R代码)
# mx plot for both side
p_mxh <- p00 +
geom_line(aes(x = xg, y = mx,
color="m1", lty="m1"),
lwd = lwd+lwadd,
data = base::subset(tb_mxh,group=="control")) +
geom_line(aes(x = xg, y = mx,
color="m2", lty="m2"),
lwd = lwd+lwadd,
data = base::subset(tb_mxh,group=="treat")) +
scale_color_manual(
name="",
breaks = c("m1", "m2"),
labels = c(expression(m(x):control),expression(m(x):treat)),
values=c("purple", "blue"))+
scale_linetype_manual(
name="",
breaks = c("m1", "m2"),
labels = c(expression(m(x):control),expression(m(x):treat)),
values=c("solid", "solid"))+
theme(legend.position = "right",
text = element_text(size = fsize))
6.7 过程5:绘制RDD置信带图
6.7.3 对断点两边同时绘制置信带(R代码)
# band plot for right side
# band plot for both side
p_band_cov <- p_mxh +
geom_ribbon(aes(x=xg,ymin = lwr, ymax = upr),
data = base::subset(tb_mxh,group=="control"),
alpha = 0.2) +
geom_ribbon(aes(x=xg,ymin = lwr, ymax = upr),
data = base::subset(tb_mxh,group=="treat"),
alpha = 0.2) +
geom_text(aes(x = c-3, y = theta_lft,
label=number(theta_lft, 0.0001)),
color = "purple")+
geom_text(aes(x = c+3, y = theta_rgt,
label=number(theta_rgt, 0.0001)),
color = "blue") +
geom_segment(aes(x=c, xend = c,
y= theta_lft, yend = theta_rgt),
arrow = arrow(length = unit(0.1,"cm"),
type = "closed"),
lty = "solid", color= "orange", lwd=lwd) +
geom_text(aes(x = c+5, y=theta_lft+0.5*theta),
label = TeX(paste0("\\hat{\\theta}=",number(theta,0.0001))),
color= "orange", size=4)
6.8 协变量RDD分析的过程步骤解读
6.8.1 第1阶段LLR估计残差
- 步骤1:直接采用前面的局部线性回归方法(LLR),用 \(Y_i\)对 \(X_i\)进行LL回归,得到第1阶段的结果变量的拟合值 \(\widehat{m}_i = \widehat{m}_i(X_i)\),并进一步构造留一法残差a \(Y_i - \widehat{m}_i\)
tbl_residual %>%
add_column(obs = 1:nrow(.), .before = "X") %>%
select(obs,D,X,Y,Za,Zb,e) %>%
DT::datatable(
caption = paste0("RDD LL估计得到的残差(n=",n,")"),
options = list(dom = "tip", pageLength =6))%>%
formatRound(c(3:7), digits = c(4,4,1,1,4))
a 这个阶段的残差序列用
e
命名。
6.8.2 第2阶段LLR估计残差
- 步骤2:同上,依次做 \(Z_a\)对 \(X_i\)、 \(Z_b\)对 \(X_i\)的局部线性回归(LLR),并分别得到协变量的拟合值 \(\widehat{g}_{1i},\widehat{g}_{2i}\),及其对应残差a \((Z_a-\widehat{g}_{1i}),(Z_b-\widehat{g}_{2i})\)
tbl_residual %>%
add_column(obs = 1:nrow(.), .before = "X") %>%
select(obs,D,X,Y,Za,Zb,e,Ra,Rb) %>%
DT::datatable(
caption = paste0("RDD LL估计得到的残差(n=",n,")"),
options = list(dom = "tip", pageLength =6))%>%
formatRound(c(3:9), digits = c(4,4,1,1,4,4,4))
a 这个阶段的两个残差序列分别用
Ra
和Rb
命名。
6.8.3 第3阶段OLS估计(模型)
- 步骤3:利用前面两个阶段的残差,做 \(Y_i -m_{i}\)对 \(Z_{i1}-\widehat{g}_{1i},Z_{i2}-\widehat{g}_{2i},\ldots,Z_{ik}-\widehat{g}_{ki}\)的无截距的普通最小二乘回归(OLS),并得到估计系数 \(\hat{\beta}\)及其标准误
\[\begin{align} (Y_i -m_{i}) &= \hat{\beta}_1(Z_{ia}-\widehat{g}_{1i})+\hat{\beta}_2(Z_{ib}-\widehat{g}_{2i})\\ e&=\hat{\beta}_{1}R_a + \hat{\beta}_{2}R_a \end{align}\]
6.8.4 第3阶段OLS估计(结果)
- 上述模型,未矫正标准误下OLS估计的结果如下a :
mod_res <- formula(e~-1+Ra+Rb)
lx_est <- xmerit::lx.est(lm.mod = mod_res ,
lm.dt = tbl_residual,
lm.n = 5,
opt = c("s","t","p"),
inf = c("over"),
digits = c(4,4,2,4))
\[\begin{equation} \begin{alignedat}{999} &\widehat{e}=&&+0.0265Ra_i&&-0.0094Rb_i\\ &(s)&&(0.0083)&&(0.0045)\\ &(t)&&(+3.19)&&(-2.08)\\ &(p)&&(0.0014)&&(0.0377)\\ &(over)&&n=2783&&\hat{\sigma}=5.7091 \end{alignedat} \end{equation}\]
- 上述模型,进行稳健标准误矫正OLS估计的结果如下b :
library(robustbase)
library(sandwich)
library(lmtest)
library(modelr)
library(broom)
# regression with robust standard errors using R
## see [url](https://www.brodrigues.co/blog/2018-07-08-rob_stderr/)
lm.out <- lm(formula = mod_res, data =tbl_residual )
broom::tidy(
lmtest::coeftest(lm.out,
vcov = sandwich::vcovHC(lm.out))
) %>%
DT::datatable(
caption = paste0("稳健标准误OLS估计(n=",n,")"),
options = list(dom = "t", pageLength =6))%>%
formatRound(c(2:5), digits = c(4,4,2,4))
a b 两种OLS估计程序下,回归系数都相同,只是系数对应的标准误不一样。这里我们仅需要用到回归系数,因此不影响后续步骤。
6.8.5 第4阶段构造残差
- 步骤4:利用前面的OLS估计系数,我们就可以构造得到残差 \(\hat{e}_i=Y_i - Z^{\prime}_i\hat{\beta}\)
tbl_residual %>%
add_column(obs = 1:nrow(.), .before = "X") %>%
select(obs,D,X,Y,Za,Zb,e,Ra,Rb,RZ) %>%
DT::datatable(
caption = paste0("RDD LL估计得到的残差(n=",n,")"),
options = list(dom = "tip", pageLength =6))%>%
formatRound(c(3:10), digits = c(4,4,1,1,4,4,4,4))
a 这个步骤构造出来的残差序列
RZ
。
6.8.6 条件期望函数CEF m(x)的LLR估计结果
- 步骤5:再次采用RDD局部线性回归方法(LLR),进行 \(\hat{e}_i\)对 \(X_i\)的回归,并计算得到非参数估计量 \(\widehat{m}(x)\),断点效应估计值 \(\hat{\theta}\)及其标准误。
tb_mxh %>%
add_column(index = 1:nrow(.), .before = "xg") %>%
select(index,group, xg,mx) %>%
DT::datatable(caption = "局部线性估计LL方法对m(x)的估计结果",
options = list(dom ="tip",
pageLength =6,
scrollX = TRUE)) %>%
formatRound(c(3), digits = c(1))%>%
formatRound(c(4), digits = c(4))
基于此,我们可以分别得到CEF m(x)在断点左侧(控制组)的估计图
类似地,也可以得到CEF m(x)在断点右侧(处置组)的估计图
综合上面,得到CEF m(x)在断点两侧的估计图:
6.8.7 条件期望函数CEF m(x)的标准差和置信区间
- 同前,进一步计算得到CEF估计值的方差和标准差以及95%置信区间
tb_mxh %>%
add_column(index = 1:nrow(.), .before = "xg") %>%
select(index, group,xg,mx,s,lwr,upr) %>%
#mutate(s2 = s^2) %>%
DT::datatable(caption = "m(x)的样本方差和标准差估计结果",
options = list(dom ="tip",
pageLength =8,
scrollX = TRUE)) %>%
formatRound(c(3), digits = c(1))%>%
formatRound(c(4:7), digits = c(4))
断点左侧(控制组)的置信带图示如下:
断点右侧(处置组)的置信带图示如下:
综合起来,断点两侧的置信带图示如下:
6.8.8 RDD断点处置效应计算结果
- 根据断点处置效应定理,可以得到在断点 \(x=c=59.1984\)处对总体平均处置效应 \(\bar{\theta}\)的样本估计结果 \(\hat{\theta}\):
\[\begin{align} \widehat{\theta} &=\left[\boldsymbol{\widehat{\beta}_{1}}(c)\right]_{1}-\left[\boldsymbol{\widehat{\beta}_{0}}(c)\right]_{1}\\ &=\hat{m}(c+)-\widehat{m}(c-)\\ &= 2.8209 - 1.2592 = -1.5617 \end{align}\]
- 断点处置效应估计值为 \(\hat{\theta}=-1.5617\)。
- 断点左边的条件期望(CEF)的估计值 \(\widehat{m}(c-)=2.8209\);
- 断点右边的条件期望(CEF)的估计值 \(\widehat{m}(c+)=1.2592\);
- 结论:援助项目的实施,减低了儿童死亡率,使得10万个孩子中约-1.5617个小孩免于遭受死亡。相比不实施项目援助,儿童死亡率由2.8209,下降到1.2592,降幅接近50%。
6.8.9 RDD断点处置效应的估计误差及显著性检验
- 进一步地,估计系数 \(\hat{\theta}\)的渐进方差为两个方差协方差矩阵第一个对角元素之和:
\[\begin{align} \text{Var}{(\hat{\theta})} &=\left[\widehat{\boldsymbol{V}}_{0}\right]_{11}+\left[\widehat{\boldsymbol{V}}_{1}\right]_{11}\\ &= 0.3673 + 0.1417 = 0.5090\\ se({(\hat{\theta})}) &= \sqrt{\text{Var}{(\hat{\theta})}} = \sqrt{0.5090} =0.7122 \end{align}\]
因此RDD断点处置效应估计值 \(\hat{\theta}\)的标准误为 \(se({\hat{\theta}}) =0.7122\);最后我们可以计算得到RDD断点处置效应对应的t统计量: \(t^{\ast}=\frac{\hat{\theta}}{se(\hat{\theta})}=-2.19\),其概率值为 \(p=0.0283\).
综上,RDD结果表明援助项目降低了儿童死亡率,使得10万个孩子中约1.56个小孩免于遭受死亡。并且t统计量检验表明,援助项目在降低了儿童死亡率上具有统计显著性(置信度超过95%)。
6.9 过程6:无协变量SRDD和有协变量SRDD的比较
6.9.2 过程步骤解读1:系数和标准误比较
tbl_theta %>%
DT::datatable(
caption = paste0("基准RDD和协变量RDD估计结果对比"),
options = list(dom = "t", pageLength =6))%>%
formatRound(c(3:4), digits = c(4))
结论1:与基准RDD相比,两个协变量的引入没有明显改变断点处置效应估计值大小。
结论2:但是是否引入协变量,对CEF估计值 \(\widehat{m}(x)\)的影响较大。可以看到基准RDD更陡峭,而协变量RDD更平缓。(见后面附图对比)
结论3:考虑到两个协变量可以视作收入的代理变量,可以看到黑人人口比重负向影响儿童死亡率,而城镇人口比重正向影响儿童死亡率。